Abstract

This paper describes a method for realizing the efficient utilization of wavelength resources in wavelength-division multiplexing networks with centralized light sources. Using a deeply saturated semiconductor optical amplifier (SOA) modulator located in a remote node (RN), we erase the data on a downstream signal with a low extinction ratio and modulate it with new data to generate an upstream signal. Thus, we use only one wavelength for bidirectional transmission between a center node and an RN, without placing lasers at the RN. In this paper, we analyze the data suppression characteristic of the SOA using a large signal model. We also estimate the bit error rate degradation in the presence of an unsuppressed downstream bit pattern in an upstream signal. We then report experimental results that confirm the basic characteristics of the wavelength channel data rewriter, which we constructed using a linear amplifier and an SOA. Finally, we provide the results of a data transmission experiment that we undertook using the data rewriter.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription