Abstract

A new optical filter architecture is proposed that employs optical subband and all-pass filters but circumvents the typical tradeoff between passband width and peak delay inherent to all-pass filters. A filter design for a dispersion compensator with a tuning range of ± 1000 ps/nm and 95-GHz passband width on a 100-GHz grid is presented. Compared with a cascade architecture, a lower core-to-cladding index contrast for planar waveguide ring resonator implementations can be used, and lower filter losses are achieved, since the signal propagates through fewer all-pass filter stages for the same dispersion. A continuously variable delay line is designed with more than 90% bandwidth utilization. For a ten-stage all-pass filter with 25-GHz free spectral range (FSR) in a double-pass configuration,a 1000-ps continuous tuning range can be achieved. Finally, a dispersion-slope compensator design is presented with a change in dispersion of 700 ps/nm over a wavelength range determined by the filter FSR-to-channel-spacing ratio.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription