Abstract

A scaling methodology for optically pumped waveguide amplifiers is presented as a function of their core-cladding index contrast. Increasing index contrast results in two crucial advantages: 1) an increase in gain efficiency and 2) a decrease in the areal footprint of a planar structure. Increasing index contrast is observed to have no effect on the output noise figure. A figure of merit summarizing these advantages demonstrates the powerful role of index contrast as an enabler for improving planar amplifier performance. Design rules are presented in the form of performance maps, allowing waveguide designers to optimize amplifier length and footprint. Using the Er-doped waveguide amplifier as a case study, we design an optical amplifier with >3-dB/cm gain within a 300 × 300-µm2 area, powered by a single 1-mW pump source. This work represents a design rule approach for making a scalable microphotonic optical amplifier.

© 2003 IEEE

PDF Article

References

  • View by:
  • |

  1. E. Desurvire, Erbium-Doped Fiber Amplifiers:Principles and Applications, New York: Wiley, 1994.
  2. P. C. Becker, N. A. Olsson and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, New York: Academic, 1999, ch. 6, pp. 66-75, 184, 161-197.
  3. L. C. Kimerling, "Silicon microphotonics", Appl. Surf. Sci., vol. 159, 160, pp. 8-13, 2000.
  4. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin and F. Cerrina, "Fabrication of ultralow-loss Si/SiO/sub 2/waveguides by roughness reduction", Opt. Lett. , vol. 26, no. 23, pp. 1888-1890, 2002.
  5. V. R. Almeida, R. Panepucci and M. Lipson, "Compact mode conversion for highly-confined waveguides", in Integrated Photonics Research, OSA Tech. Dig., Washington, DC, 2003, pp. 230- 233.
  6. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler and J. M. Poate, "Optical doping of waveguide materials by MeV Er implantation", J. Appl. Phys., vol. 70, no. 7, pp. 3778-3784, 1991.
  7. M. Dejneka and B. Samson, "Rare-earth-doped fibers for telecommunications applications", MRS Bull. , vol. 24, no. 9, pp. 39-45, 1999.
  8. M. Digonnet, Ed. Selected Papers on Rare-Earth-Doped Fiber Laser Sources and Amplifiers, New York: Marcel Dekker, 2001.
  9. K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori and M. Horiguchi, "Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler", Electron. Lett., vol. 30, p. 856, 1994.
  10. G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich and Y. H. Wong, "Systems evaluation of an Er3+ -doped planar waveguide amplifier", IEEE Photon. Technol. Lett., vol. 5, p. 1185, Oct. 1993.
  11. A. V. Chelnokov, J.-M. Lourtioz, Ph. Boucard, H. Bernas, J. Chaumont and T. Plowman, "Deep erbium-ytterbium implantation codoping of low-loss silicon oxynitride waveguides", Electron. Lett., vol. 31, no. 8, pp. 636-638, 1995.
  12. M. Krishnaswamy, J. N. McMullin, B. P. Keyworth and J. S. Hayden, "Optical properties of strip-loaded Er-doped waveguides", Opt. Mater., vol. 6, pp. 287 -292, 1996.
  13. Y. C. Yan, A. J. Faber, H. de Waal, A. Polman and P. G. Kik, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µ m", Appl. Phys. Lett., vol. 71, no. 20, pp. 2922-2944, 1997 .
  14. P. G. Kik and A. Polman, "Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2 ", J. Appl. Phys., vol. 91, no. 1, pp. 534-536, 2002.
  15. D. M. Gill, G. M. Ford, B. A. Block, S. Kim, B. W. Wessels and S. T. Ho, "Guided wave absorption and fluorescence in epitaxial Er:BaTiO3", Thin Solid Films, vol. 365, pp. 126-128, 2000.
  16. S. F. Wong, E. Y. B. Pun and P. S. Chung, "Er3+ -Yb 3+ codoped phosphate glass waveguide amplifier using Ag+ -Li+ ion exchange", IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 80-82, Jan. 2002.
  17. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen and M. K. Smit, "Net optical gain at 1.53 mu in Er-doped Al2O3 waveguides on silicon", Appl. Phys. Lett., vol. 68, no. 14, pp. 1886-1888, 1996.
  18. D. Barbier and R. L. Hyde, "Erbium-doped glass waveguide devices," Integrated Optical Circuits and Components:Design and Applications, E. J. Murphy, Ed. New York: Marcel Dekker, 1999.
  19. C. Strohhofer and A. Polman, "Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers", J. Appl. Phys., vol. 90, no. 9, pp. 4314-4320, 2001.
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, New York: Wiley, 1991, pp. 253, 488-489.
  21. J. Hecht, "The evolution of optical amplifiers", Optics Phot. News , vol. 13, no. 8, pp. 36-39, 2002.
  22. K. K. Lee, D. R. Lim, H. Luan, A. Agarwal, J. Foresi and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO/sub 2/waveguide: Experiments and model", Appl. Phys. Lett. , vol. 77, no. 11, pp. 1617-1619, 2000.
  23. Corning LEAF Fiber Website, Product Catalog. [Online]. Available: http://www.corning.com/opticalfiber/products_services/product_catalog/leaf
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, New York: Wiley, 1991, p. 277.

Other (24)

E. Desurvire, Erbium-Doped Fiber Amplifiers:Principles and Applications, New York: Wiley, 1994.

P. C. Becker, N. A. Olsson and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, New York: Academic, 1999, ch. 6, pp. 66-75, 184, 161-197.

L. C. Kimerling, "Silicon microphotonics", Appl. Surf. Sci., vol. 159, 160, pp. 8-13, 2000.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin and F. Cerrina, "Fabrication of ultralow-loss Si/SiO/sub 2/waveguides by roughness reduction", Opt. Lett. , vol. 26, no. 23, pp. 1888-1890, 2002.

V. R. Almeida, R. Panepucci and M. Lipson, "Compact mode conversion for highly-confined waveguides", in Integrated Photonics Research, OSA Tech. Dig., Washington, DC, 2003, pp. 230- 233.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler and J. M. Poate, "Optical doping of waveguide materials by MeV Er implantation", J. Appl. Phys., vol. 70, no. 7, pp. 3778-3784, 1991.

M. Dejneka and B. Samson, "Rare-earth-doped fibers for telecommunications applications", MRS Bull. , vol. 24, no. 9, pp. 39-45, 1999.

M. Digonnet, Ed. Selected Papers on Rare-Earth-Doped Fiber Laser Sources and Amplifiers, New York: Marcel Dekker, 2001.

K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori and M. Horiguchi, "Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler", Electron. Lett., vol. 30, p. 856, 1994.

G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich and Y. H. Wong, "Systems evaluation of an Er3+ -doped planar waveguide amplifier", IEEE Photon. Technol. Lett., vol. 5, p. 1185, Oct. 1993.

A. V. Chelnokov, J.-M. Lourtioz, Ph. Boucard, H. Bernas, J. Chaumont and T. Plowman, "Deep erbium-ytterbium implantation codoping of low-loss silicon oxynitride waveguides", Electron. Lett., vol. 31, no. 8, pp. 636-638, 1995.

M. Krishnaswamy, J. N. McMullin, B. P. Keyworth and J. S. Hayden, "Optical properties of strip-loaded Er-doped waveguides", Opt. Mater., vol. 6, pp. 287 -292, 1996.

Y. C. Yan, A. J. Faber, H. de Waal, A. Polman and P. G. Kik, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µ m", Appl. Phys. Lett., vol. 71, no. 20, pp. 2922-2944, 1997 .

P. G. Kik and A. Polman, "Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2 ", J. Appl. Phys., vol. 91, no. 1, pp. 534-536, 2002.

D. M. Gill, G. M. Ford, B. A. Block, S. Kim, B. W. Wessels and S. T. Ho, "Guided wave absorption and fluorescence in epitaxial Er:BaTiO3", Thin Solid Films, vol. 365, pp. 126-128, 2000.

S. F. Wong, E. Y. B. Pun and P. S. Chung, "Er3+ -Yb 3+ codoped phosphate glass waveguide amplifier using Ag+ -Li+ ion exchange", IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 80-82, Jan. 2002.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen and M. K. Smit, "Net optical gain at 1.53 mu in Er-doped Al2O3 waveguides on silicon", Appl. Phys. Lett., vol. 68, no. 14, pp. 1886-1888, 1996.

D. Barbier and R. L. Hyde, "Erbium-doped glass waveguide devices," Integrated Optical Circuits and Components:Design and Applications, E. J. Murphy, Ed. New York: Marcel Dekker, 1999.

C. Strohhofer and A. Polman, "Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers", J. Appl. Phys., vol. 90, no. 9, pp. 4314-4320, 2001.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, New York: Wiley, 1991, pp. 253, 488-489.

J. Hecht, "The evolution of optical amplifiers", Optics Phot. News , vol. 13, no. 8, pp. 36-39, 2002.

K. K. Lee, D. R. Lim, H. Luan, A. Agarwal, J. Foresi and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO/sub 2/waveguide: Experiments and model", Appl. Phys. Lett. , vol. 77, no. 11, pp. 1617-1619, 2000.

Corning LEAF Fiber Website, Product Catalog. [Online]. Available: http://www.corning.com/opticalfiber/products_services/product_catalog/leaf

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, New York: Wiley, 1991, p. 277.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.