Abstract

We propose an approach to optical wave field spot-size conversion that uses a waveguide structure. An optical wave field is decomposed with a Hermite-Gaussian basis, and we describe its motion with partial differential equations for the field radius and center parameters derived from the propagation of the lower order components. We use the equations to design a spot-size conversion waveguide structure for expanding and reducing a field spot as an example in a quasi-single-mode optical waveguide.

© 2003 IEEE

PDF Article

References

  • View by:
  • |

  1. S. G.Sergej G. Krivoshlykov, Quantum-Theoretical Formalism for Inhomogeneous Graded-Index Waveguides, Berlin: Germany: Akademie-Verlag, 1994.
  2. H. Wu, and F. S. Barnes, Eds. Microlenses: Coupling Light to Optical Fibers, Piscatway, NJ: IEEE Press, 1990.
  3. M. Kawachi, "Silica waveguides on silicon and their application to integrated-optic components", Optic. Quantum Electron., vol. 22, pp. 391-416, 1990.
  4. M. Itoh, T. Saida, Y. Hida, M. Ishii, Y. Inoue, Y. Hibino and A. Sugita, "Large reduction of singlemode-fiber coupling loss in 1.5% delta planar lightwave circuits using spot-size converters", Electron. Lett., vol. 38, no. 2, pp. 72-74, 2002.
  5. Y. Tohmori, Y. Suzaki, H. Fukano, M. Okamoto, Y. Sakai, O. Mitomi, S. Matsumoto, M. Yamamoto, M. Fukuda, M. Wada, Y. Itaya and T. Sugie, "Spot-size converted 1.3 µm laser with butt-jointed selectively grown vertically tapered waveguide", Electron. Lett., vol. 31, no. 13, pp. 1069-1070, 1995 .
  6. Z. Weissman and A. Hardy, "Modes of periodically segmented waveguides", J. Lightwave Technol., vol. 11, pp. 1831-1838, Nov. 1993 .
  7. Z. Weissman and I. Hendel, "Analysis of periodically segmented waveguide mode expanders", J. Lightwave Technol., vol. 13, pp. 2053-2058, Oct. 1993.
  8. M. M. Spuhler, B. J. Offrein, G. L. Bona, R. Germann, I. Massarek and D. Erni, "A very short planar silica spot-size converter using a nonperiodic segmented waveguide", J. Lightwave Technol. , vol. 16, pp. 1680-1685, Sept. 1993.
  9. M. H. Chou, M. A. Arbore and M. M. Fejer, "Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation", Opt. Lett., vol. 21, no. 11, pp. 794-796, 1996.
  10. K. Thyagarajan, V. Mahalakshmi and M. R. Shenoy, "Propagation characteristics of planar segmented waveguides with parabolic index segments", Opt. Lett., vol. 19, no. 24, pp. 2113-2115, 1996.
  11. S. Longhi, "Parametric resonance in periodic paraxial optical systems", Opt. Commun., no. 176, pp. 327 -338, 2000.
  12. J. P. R. Lacey and F. P. Payne, "Radiation loss from planar waveguides with random wall imperfections", IEE Proc., vol. 137, no. 4, pp. 282-288, 1990.
  13. R. Magnanini and F. Santosa, "Wave propagation in a 2-D optical waveguide", SIAM J. Appl. Math, vol. 61, no. 4, pp. 1237-1252, 2000 .
  14. L. B. Felsen, Ed. Hybrid Formulation of Wave Propagation and Scattering, Dordecht: The Netherlands: Kluwer Academic, 1984.
  15. B. Biao, A. K. Jordan and L. S. Tamil, "Numerical inverse scattering theory for the design of planar optical waveguides", J. Opt. Soc. Amer. A, vol. 11, no. 11, pp. 1863-1876, 1994.
  16. A. K. Jordan and S. Lakshmanasamy, "Inverse scattering theory applied to the design of single mode planar optical waveguides", J. Opt. Soc. Amer. A, vol. 6, no. 8, pp. 1206-1212, 1989.
  17. J. Xia, A. K. Jordan and J. A. Kong, "Inverse-scattering view of modal structures in inhomogeneous optical waveguides", J. Opt. Soc. Amer. A, vol. 9, no. 5, pp. 740-748, 1992.
  18. H. Nakazato and M. Namik, "Temporal behavior of quantum mechanical systems", Int. J. Mod. Phys. B, vol. 10, no. 3, pp. 247-295, 1996.
  19. W. Heitler, The Quantum Theory of Radiation, 3rd ed. London: U.K.: Oxford Univ. Press, 1954 .
  20. F. Wassmann, "Modal field analysis of circularly bent single mode fibers", J. Lightwave Technol., vol. 17, pp. 957-968, May 1999.
  21. Y. Akahori, I. Ogawa, T. Hashimoto, T. Oyama, T. Tanaka, T. Kurosaki and Y. Tohmori, "Silica-based planar lightwave circuit (PLC) technologies. PLC hybrid integration technologies and developed devices", NTT Rev., vol. 13, no. 5, pp. 42-50, 2001.
  22. A. U. Hazi and H. S. Taylor, "Stabilization method of calculating resonance energies: Model problem", Phys. Rev. A, vol. 1, no. 4, pp. 1109 -1120, 1970.
  23. S. Yoshida, S. Watanabe, C. O. Reinhold and J. Burgdoerfer, "Reflection free propagation of wave packets", Phys. Rev. A, vol. 60, no. 2, pp. 1113 -1123, 1999.

J. Lightwave Technol. (3)

Z. Weissman and A. Hardy, "Modes of periodically segmented waveguides", J. Lightwave Technol., vol. 11, pp. 1831-1838, Nov. 1993 .

Z. Weissman and I. Hendel, "Analysis of periodically segmented waveguide mode expanders", J. Lightwave Technol., vol. 13, pp. 2053-2058, Oct. 1993.

F. Wassmann, "Modal field analysis of circularly bent single mode fibers", J. Lightwave Technol., vol. 17, pp. 957-968, May 1999.

Other (20)

Y. Akahori, I. Ogawa, T. Hashimoto, T. Oyama, T. Tanaka, T. Kurosaki and Y. Tohmori, "Silica-based planar lightwave circuit (PLC) technologies. PLC hybrid integration technologies and developed devices", NTT Rev., vol. 13, no. 5, pp. 42-50, 2001.

A. U. Hazi and H. S. Taylor, "Stabilization method of calculating resonance energies: Model problem", Phys. Rev. A, vol. 1, no. 4, pp. 1109 -1120, 1970.

S. Yoshida, S. Watanabe, C. O. Reinhold and J. Burgdoerfer, "Reflection free propagation of wave packets", Phys. Rev. A, vol. 60, no. 2, pp. 1113 -1123, 1999.

S. G.Sergej G. Krivoshlykov, Quantum-Theoretical Formalism for Inhomogeneous Graded-Index Waveguides, Berlin: Germany: Akademie-Verlag, 1994.

H. Wu, and F. S. Barnes, Eds. Microlenses: Coupling Light to Optical Fibers, Piscatway, NJ: IEEE Press, 1990.

M. Kawachi, "Silica waveguides on silicon and their application to integrated-optic components", Optic. Quantum Electron., vol. 22, pp. 391-416, 1990.

M. Itoh, T. Saida, Y. Hida, M. Ishii, Y. Inoue, Y. Hibino and A. Sugita, "Large reduction of singlemode-fiber coupling loss in 1.5% delta planar lightwave circuits using spot-size converters", Electron. Lett., vol. 38, no. 2, pp. 72-74, 2002.

Y. Tohmori, Y. Suzaki, H. Fukano, M. Okamoto, Y. Sakai, O. Mitomi, S. Matsumoto, M. Yamamoto, M. Fukuda, M. Wada, Y. Itaya and T. Sugie, "Spot-size converted 1.3 µm laser with butt-jointed selectively grown vertically tapered waveguide", Electron. Lett., vol. 31, no. 13, pp. 1069-1070, 1995 .

M. M. Spuhler, B. J. Offrein, G. L. Bona, R. Germann, I. Massarek and D. Erni, "A very short planar silica spot-size converter using a nonperiodic segmented waveguide", J. Lightwave Technol. , vol. 16, pp. 1680-1685, Sept. 1993.

M. H. Chou, M. A. Arbore and M. M. Fejer, "Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation", Opt. Lett., vol. 21, no. 11, pp. 794-796, 1996.

K. Thyagarajan, V. Mahalakshmi and M. R. Shenoy, "Propagation characteristics of planar segmented waveguides with parabolic index segments", Opt. Lett., vol. 19, no. 24, pp. 2113-2115, 1996.

S. Longhi, "Parametric resonance in periodic paraxial optical systems", Opt. Commun., no. 176, pp. 327 -338, 2000.

J. P. R. Lacey and F. P. Payne, "Radiation loss from planar waveguides with random wall imperfections", IEE Proc., vol. 137, no. 4, pp. 282-288, 1990.

R. Magnanini and F. Santosa, "Wave propagation in a 2-D optical waveguide", SIAM J. Appl. Math, vol. 61, no. 4, pp. 1237-1252, 2000 .

L. B. Felsen, Ed. Hybrid Formulation of Wave Propagation and Scattering, Dordecht: The Netherlands: Kluwer Academic, 1984.

B. Biao, A. K. Jordan and L. S. Tamil, "Numerical inverse scattering theory for the design of planar optical waveguides", J. Opt. Soc. Amer. A, vol. 11, no. 11, pp. 1863-1876, 1994.

A. K. Jordan and S. Lakshmanasamy, "Inverse scattering theory applied to the design of single mode planar optical waveguides", J. Opt. Soc. Amer. A, vol. 6, no. 8, pp. 1206-1212, 1989.

J. Xia, A. K. Jordan and J. A. Kong, "Inverse-scattering view of modal structures in inhomogeneous optical waveguides", J. Opt. Soc. Amer. A, vol. 9, no. 5, pp. 740-748, 1992.

H. Nakazato and M. Namik, "Temporal behavior of quantum mechanical systems", Int. J. Mod. Phys. B, vol. 10, no. 3, pp. 247-295, 1996.

W. Heitler, The Quantum Theory of Radiation, 3rd ed. London: U.K.: Oxford Univ. Press, 1954 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.