Abstract

In this paper, we propose and analyze an electrically modulated silicon-on-insulator (SOI) submicrometer-size high-index-contrast waveguide. The geometry of the waveguide provides high lateral optical confinement and defines a lateral p-i-n diode. The electrooptic structure is electrically and optically modeled. The effect of the waveguide geometry on the device performance is studied. Our calculations indicate that this scheme can be used to implement submicrometer high-index-contrast waveguide active devices on SOI. As an example of application, a one-dimensional microcavity intensity modulator is predicted to exhibit a modulation depth as high as 80% by employing a dc power consumption as low as 14 µW .

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription