Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 20,
  • Issue 8,
  • pp. 1590-
  • (2002)

Low-Loss Deep Glass Waveguides Produced With Dry Silver Electromigration Process

Not Accessible

Your library or personal account may give you access

Abstract

We report an effectively simple dry silver electromigration technology designed to fabricate low-loss deep channel waveguides on a specially chosen BF450 glass substrate with refractive index of 1.472. The simplicity is achieved by replacing the gold or aluminum film electrodes commonly deposited on the glass substrate with two stainless-steel electrodes to facilitate the electromigration process. In contrast to earlier ion exchange waveguides reported, a relatively high electrical field of 545 V/mm was applied to the glass to speed up the migration and also to prevent the silver ions that were driven into the glass from reducing into silver atoms, a major contributor to waveguide loss. The deep channel waveguides thus fabricated showed no discolors or cracks, of which the attenuation losses of less than 0.1 dB/cm were later measured using our 0.6328 µm He-Ne laser edge-coupling setup. Lastly, the scanning electron microscope equipped with an energy-dispersive X-ray (EDX) detector was adopted to obtain the concentration profile of silver ions distributed in a channel waveguide region after the exchange. The EDX measurements were then utilized along with the Gladstone-Dale relation to deduce the refractive index profile, of which a nearly step-like profile was deduced from every deep channel waveguide fabricated.

[IEEE ]

PDF Article
More Like This
Waveguide coupler for potassium- and silver-ion-exchanged waveguides in glass

Seppo Honkanen, Pekka Pöyhönen, Ari Tervonen, and S. Iraj Najafi
Appl. Opt. 32(12) 2109-2111 (1993)

Low-loss channel waveguides and Y-splitter formed by ion-exchange in silica-on-silicon

Zian He, Yigang Li, Yingfeng Li, Yanwu Zhang, Liying Liu, and Lei Xu
Opt. Express 16(5) 3172-3177 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.