We will study the optical filtering technique for dense wavelength division multiplexing (DWDM) channel allocation of millimeter-wave fiber-radio signals in the optical double-sideband (DSB) format. First, we will investigate both theoretically and experimentally the dispersion effect of fiber Bragg grating (FBG) used as the filter on DWDM millimeter-wave optical signal transmissions. This result suggests that the dispersion effect has to be considered in the DWDM channel allocation for millimeter-wave fiber-radio access systems. Next,we will propose a DWDM allocation for millimeter-wave fiber-radio systems,which adopts the optical single-sideband (SSB) filtering technique at the receiver side by using a square response of FBG filter. It can realize the minimum WDM channel interval for optical DSB signals, while it enables the optical frequency interleave between the neighboring channels without any serious signal degradation due to the interchannel interference. Then, we will experimentally demonstrate the error-free DWDM transmission of two 60-GHz-band,155.52-Mb/s differential phase-shift keying (DPSK) fiber-radio signals over 25-km-long single-mode fiber (SMF) with the minimum channel interval of 83.6 GHz (=0.68~nm) by using the test-square response FBGs. Finally, we will show that based upon the experimental results, in the micro-or pico-cellular DWDM broad-band millimeter-wave fiber-radio access network 1000 antenna base stations (BSs) under the coverage of the single central office (CO) would be feasible by sectorizing the zone.


PDF Article


  • View by:
  • |

  1. K. Kitayama, "Highly spectrum efficient OFDM/PDM wireless networks by using optical SSB modulation", J. Lightwave Technol., vol. 16, pp. 969-976, June 1998.
  2. K. Kitayama, "Ultimate performance of optical DSB signal based mm-wave fiber-radio system: Effect of laser phase noise", J. Lightwave Technol., vol. 17, pp. 1774-1781, Oct. 1999.
  3. H. Sotobayashi and K. Kitayama, "Cancellation of signal fading for 60 GHz subcarrier multiplexed optical DSB signal transmission in nondispersion-shifted fiber using midway optical phase conjugation", J. Lightwave Technol., vol. 17, pp. 2488-2497, Dec. 1999.
  4. T. Kuri, K. Kitayama, A. Stöhr and Y. Ogawa, "Fiber-optic millimeter-wave downlink system using 60 GHz-band external modulation", J. Lightwave Technol., vol. 17, pp. 799-806, May 1999.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.