Abstract

Restoration of distorted optical pulses is achieved using nonlinear fiber self-phase spectral broadening and subsequent optical band-pass filtering of a single sideband. Using this technique, the output pulsewidth is shown to remain constant for input pulse-widths between 9-20 ps. A detailed investigation of the signal-to-noise ratio shows that best performance is obtained by operating in normal fiber dispersion regime. This technique is also applied to restore 40 Gb/s RZ-data suffering distortion from polarization mode dispersion. The high-bandwidth fiber nonlinearity shows promise to scale to higher bit rate pulse distortion correction.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription