Abstract

In this paper, we address accurate computation of complex propagation constants and field distributions of different modes, in general, lossless and lossy optical dielectric waveguides. Using the vector finite-element formulation of the beam propagation method combined with the imaginary distance propagation technique, sequence of both the guided and leaky modes can be accurately calculated. To show the versatility and numerical precision of the proposed technique,we compute the modes of three different three-dimensional (3-D) waveguide structures and compare the results against those of other, different, vector formulations. Further, we present the design of a higher order mode filtering device, based on a 3-D leaky mode optical waveguide.

[IEEE ]

PDF Article

References

  • View by:
  • |

  1. M. D. Feit and J. A. Fleck Jr., "Light propagation in graded-index optical fibers", Appl. Opt., vol. 26, pp. 3990 -3998, Dec. 1978.
  2. G. R. Hadley, "Transparent boundary condition for the beam propagation method", Opt. Lett., vol. 16, pp. 624-626, May 1991.
  3. S. S. A. Obayya, B. M. A. Rahman and H. A. El-Mikati, "New full vectorial numerically efficient propagation algorithm based on the finite element method", J. Lightwave Technol., vol. 18, pp. 409-415, Mar. 2000.
  4. C. L. Xu, W. P. Huang and S. K. Chaudhuri, "Efficient and accurate vector mode calculations by beam propagation method", J. Lightwave Technol., vol. 11, pp. 1209-1215, July 1993.
  5. F. Wijnands, H. J. W. M. Hoekstra, G. J. M. Krijinen and R. M. de Ridder, "Modal fields calculation using the finite difference beam propagation method", J. Lightwave Technol., vol. 12, pp. 2066-2071, Dec. 1994.
  6. Y. Tsuji and M. Koshiba, "Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme", J. Lightwave Technol., vol. 18, pp. 618-623, Apr. 2000.
  7. G. R. Hadley and R. E. Smith, "Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions", J. Lightwave Technol., vol. 13, pp. 465-469, Mar. 1995.
  8. M. Koshiba, S. Maruyama and K. Hirayama, "A vector finite element method with the high-order mixed-interpolation-type triangular elements for optical waveguiding problems", J. Lightwave Technol., vol. 12, pp. 495-502, Mar. 1994 .

Appl. Opt.

M. D. Feit and J. A. Fleck Jr., "Light propagation in graded-index optical fibers", Appl. Opt., vol. 26, pp. 3990 -3998, Dec. 1978.

J. Lightwave Technol.

C. L. Xu, W. P. Huang and S. K. Chaudhuri, "Efficient and accurate vector mode calculations by beam propagation method", J. Lightwave Technol., vol. 11, pp. 1209-1215, July 1993.

F. Wijnands, H. J. W. M. Hoekstra, G. J. M. Krijinen and R. M. de Ridder, "Modal fields calculation using the finite difference beam propagation method", J. Lightwave Technol., vol. 12, pp. 2066-2071, Dec. 1994.

G. R. Hadley and R. E. Smith, "Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions", J. Lightwave Technol., vol. 13, pp. 465-469, Mar. 1995.

M. Koshiba, S. Maruyama and K. Hirayama, "A vector finite element method with the high-order mixed-interpolation-type triangular elements for optical waveguiding problems", J. Lightwave Technol., vol. 12, pp. 495-502, Mar. 1994 .

S. S. A. Obayya, B. M. A. Rahman and H. A. El-Mikati, "New full vectorial numerically efficient propagation algorithm based on the finite element method", J. Lightwave Technol., vol. 18, pp. 409-415, Mar. 2000.

Y. Tsuji and M. Koshiba, "Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme", J. Lightwave Technol., vol. 18, pp. 618-623, Apr. 2000.

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.