Abstract

We investigate the tolerance of the variation of average dispersion in a 40-Gb/s dispersion-managed soliton (DMS) transmission system. It is theoretically shown that dispersion tolerance is governed by pulse broadening and soliton interaction, and that the largest dispersion tolerance can be achieved by optimizing the pulse energy depending on the transmission distance. We construct a 40-Gb/s recirculating loop transmission system and show that the dispersion tolerance of over 180 ps/nm, which is much larger than that of a linear nonreturn-to-zero (NRZ) format system, can be realized by the optimization of the pulse energy at a transmission distance of more than 1000 km.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription