Abstract

A new full-vector approach to calculate leaky modes on three-dimensional bending waveguides is developed and demonstrated with the help of the cylindrical perfectly matched layer (CPML) numerical boundary conditions. By utilizing the complex coordinate stretching technique in the cylindrical system, a new set of full-vector wave equations for the bending waveguide structures are derived for the perfectly matched layer regions. Numerical solutions by the finite-difference schemes for the new wave equations are shown to yield highly accurate complex propagation constants (e.g., the bending-induced phase shifts and leakage losses) and modal field patterns, due primarily to the effective CPML.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription