We describe the numerical analysis of a lightwave synthesized frequency sweeper (LSFS) that uses an optical single-sideband (SSB) modulator composed of four optical phase modulators. The SSB modulator realizes a large frequency shift in the LSFS. This means that we can reduce the number of pulse circulations in the LSFS cavity to cover a given frequency sweep range. We propose a frequency-domain analysis method for the LSFS, in which a general optical modulator is expressed by using a matrix that includes optical phase terms. We employ this method to simulate the LSFS for several different phase-and group-velocity dispersion values in the lightpaths in the LSFS cavity. The results indicate that we can realize a linear frequency sweep by adjusting the phase change of the modulation signal during the cavity round-trip time.


PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription