Abstract

We demonstrate an elementary grating-based optical code division multiple access (OCDMA) code generation and recognition system incorporating a nonlinear optical loop mirror (NOLM) within the receiver. We show that the NOLM can act as a nonlinear processing element capable of reducing both the pedestal associated with conventional matched filtering and the width of the associated code-recognition pulse. The pedestal rejection allows for an improved code recognition signal-to-noise ratio (SNR) relative to simple matched filtering alone, and reduced intra-and interchannel interference noise due to code overlap. The system benefits of using the NOLM are experimentally demonstrated under both single-and multiuser operation within a variety of seven-and 63-chip 160-Gchip/s code generation, recognition, and transmission experiments based on the use of bipolar superstructure fiber Bragg grating (SSFBG) coding-decoding pairs. Incorporation of the NOLM is shown to allow error-free penalty-free operation at data rates as high as 2.5 Gb/s under single-user operation, and to provide error-free performance with reduced power penalty in two-user experiments. The narrowed pulse recognition signature offers major advantages in terms of the further all-optical processing of decoded signals, such as code regeneration and recoding.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription