Abstract

The phase evolution of optical waves in a waveguide structure has been studied with a heterodyne interferometric photon scanning tunneling microscope. Both phase and amplitude of the local optical field are measured with subwavelength resolution. Topographical maps of the waveguide surface are obtained simultaneously with the optical information. Unexpected phase patterns, with phase jumps and phase singularities, have been observed. The phase patterns can be fully understood by taking into account the total field that is the sum of the optical fields of the various modes. We show that with the unique spatial phase information, the relative field profiles and wave vectors of all the excited modes in a multimodal waveguide structure can be determined independently.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription