Abstract

We extend the Shannon information theory to a nonlinear system and present a model for calculating the channel capacity of an optical-fiber transmission system using dispersion-free fiber. For this particular fiber,a closed-form solution for the nonlinear Schroedinger equation exists. This allows us to derive an analytical result for the channel capacity that is exact and valid for arbitrary input power. We will study the single-span case and examine the dependence of the capacity on operating input power, the number of channels (Nc), the noise power (PW), etc. The maximum capacity is shown to follow a simple scaling law with log2(1+CNc-2/3PW-2/3) dependence.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription