We propose a new method for tuning an Er3+-doped continuous-wave fiber-ring laser. We present a novel numerical model and confirm the model with experimental results. The numerical model relies on the implementation of the analytical solution of signal propagation over small (elemental) segments of amplifier fiber rather than using the usual Runge-Kutta algorithm. The validity of the model is verified by the good agreement between computer results and experimental data. Experiments demonstrating a 11.2-nm wavelength tuning range have been conducted using an electrooptic intracavity filter composed of two cascaded unbalanced Mach-Zehnder interferometers (MZIs) integrated in lithium niobate. The numerical analysis shows that the tuning range obtained is limited by the combination of gain shape and filter characteristics. Increased tuning range can be obtained by decreasing losses or by using a more selective filter.


PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription