Abstract

The two-dimensional (2-D) iterative finite difference beam-propagation method (IFD-BPM) is modified to model the cylindrically symmetric three-dimensional (quasi-3-D) second-order nonlinear wavelength conversion in quasi-phase-matched condition. The study shows that the difference between the 2-D and 3-D schemes is small for the guided waves but large for the nonguided beams. The comparison with experimental results shows that the quasi-3-D IFD-BPM is closer to reality than the 2-D scheme. In addition, simulation using the quasi-3-D IFD-BPM reveals that plane-wave and Gaussian-beam assumptions are not sufficient for estimating the nonlinear conversion and beam propagation in second-order nonlinear devices.

© 2001 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription