Abstract

A new coherent optical detection technique employing coherent frequency-domain reflectometry and a novel optical frequency sensor is demonstrated for high-precision optical path-length measurements. Using pulsed laser sources,an improvement of more than two orders of magnitude in spatial resolution over conventional optical coherent frequency domain reflectometry techniques is demonstrated. Varying degrees of spatial resolution ranging from several centimeters to a few hundred nanometers are achieved. High-precision distance measurement with long baseline is also presented.

© 2001 IEEE

PDF Article

References

  • View by:
  • |

  1. P. Palojarvi, K. Maatta and J. Kostamovaara, "Integrated time-of-flight laser radar", IEEE Trans. Instrum. Meas., vol. 46, p. 996, 1997.
  2. B. E. A. Saleh and M. Teich, Fundamentals of Photonics, New York: Wiley, 1991, pp. 65-66.
  3. M. Skolnik, Radar Handbook, 2nd ed. New York: McGraw-Hill, 1990, pp. 14.27-14.36.
  4. K. Tsuji, K. Shimizu, T. Horiguchi and Y. Koyamada, "Coherent optical frequency domain reflectometry using phase-decorrelated reflected and reference lightwaves", J. Lightwave Tech., vol. 15, p. 1102, 1997.
  5. K. S. Abedin, M. Hyodo and N. Onodera, "Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation", Opt. Lett., vol. 25, p. 299, 2000.
  6. B. Golubovic, B. Bouma, G. Tearney and J. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+ : forsterite laser", Opt. Lett., vol. 22, p. 1704, 1997.
  7. G. Agrawal, Nonlinear Fiber Optics, New York: Academic, 1995, pp. 203-206.
  8. K. Kishino, S. Aoki and Y. Suematsu, "Wavelength variation of 1.6 µ m wavelength buried heterostructure GaInAsP/InP lasers due to direct modulation", IEEE J. Quantum Electron., vol. QE-18, p. 343, 1982.
  9. W. T. Tsang, N. A. Olsson and R. A. Logan, "High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers", Appl. Phys. Lett., vol. 42, p. 650, 1983.
  10. J. P. van der Ziel, "Spectral broadening of pulsating Al x Ga1-x As double heterostructure lasers", IEEE J. Quantum Elect., vol. QE-15, p. 1277, 1979.
  11. P. Gunter, and J. P. Huignard, Eds., Photorefractive Materials and Their Applications, Berlin: Germany: Springer-Verlag, 1988.
  12. C.-C. Wang, F. Davidson and S. Trivedi, "Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences", Appl. Opt. , vol. 34, p. 6496, 1995.
  13. S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa and I. Apostal, "Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs: Cr", Opt. Lett., vol. 15, p. 1239, 1990.
  14. C.-C. Wang and F. Davidson, "Optical spectral analysis using moving space-charge field effects in photoconductive semiconductors", J. Opt. Soc. Amer. B, vol. 13, p. 1376, 1996.
  15. F. Malbet et al., "Integrated optics for astronomical interferometry. I. Concept and astronomical applications", Astron. Astrophys. Suppl. Ser., vol. 138, p. 135, 1999.

Other (15)

P. Palojarvi, K. Maatta and J. Kostamovaara, "Integrated time-of-flight laser radar", IEEE Trans. Instrum. Meas., vol. 46, p. 996, 1997.

B. E. A. Saleh and M. Teich, Fundamentals of Photonics, New York: Wiley, 1991, pp. 65-66.

M. Skolnik, Radar Handbook, 2nd ed. New York: McGraw-Hill, 1990, pp. 14.27-14.36.

K. Tsuji, K. Shimizu, T. Horiguchi and Y. Koyamada, "Coherent optical frequency domain reflectometry using phase-decorrelated reflected and reference lightwaves", J. Lightwave Tech., vol. 15, p. 1102, 1997.

K. S. Abedin, M. Hyodo and N. Onodera, "Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation", Opt. Lett., vol. 25, p. 299, 2000.

B. Golubovic, B. Bouma, G. Tearney and J. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+ : forsterite laser", Opt. Lett., vol. 22, p. 1704, 1997.

G. Agrawal, Nonlinear Fiber Optics, New York: Academic, 1995, pp. 203-206.

K. Kishino, S. Aoki and Y. Suematsu, "Wavelength variation of 1.6 µ m wavelength buried heterostructure GaInAsP/InP lasers due to direct modulation", IEEE J. Quantum Electron., vol. QE-18, p. 343, 1982.

W. T. Tsang, N. A. Olsson and R. A. Logan, "High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers", Appl. Phys. Lett., vol. 42, p. 650, 1983.

J. P. van der Ziel, "Spectral broadening of pulsating Al x Ga1-x As double heterostructure lasers", IEEE J. Quantum Elect., vol. QE-15, p. 1277, 1979.

P. Gunter, and J. P. Huignard, Eds., Photorefractive Materials and Their Applications, Berlin: Germany: Springer-Verlag, 1988.

C.-C. Wang, F. Davidson and S. Trivedi, "Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences", Appl. Opt. , vol. 34, p. 6496, 1995.

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa and I. Apostal, "Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs: Cr", Opt. Lett., vol. 15, p. 1239, 1990.

C.-C. Wang and F. Davidson, "Optical spectral analysis using moving space-charge field effects in photoconductive semiconductors", J. Opt. Soc. Amer. B, vol. 13, p. 1376, 1996.

F. Malbet et al., "Integrated optics for astronomical interferometry. I. Concept and astronomical applications", Astron. Astrophys. Suppl. Ser., vol. 138, p. 135, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.