Abstract

The wavelength-sensitive transparent properties of direct-bandgap semiconductor optical diodes (DBSODs) can be utilized for wavelength sensing. A simplified theory is used to describe the operation principles of such wavelength sensing schemes. The principles can be applied to realize different measures,including sensing with or without pilot tone for single wavelength or multiple wavelengths. The simplified theory can also provide an easy way for estimating the wavelength resolution and accuracy. The wavelength resolution is demonstrated to be better than 0.01 nm by detecting the induced junction voltage for a fixed bias. The resolution is limited by the current resolution of the bias source to 0.03 nm when the wavelength is to be discriminated by transparent current detection. The feasibility and limitation of multiwavelength sensing using a single semiconductor optical amplifier are addressed both theoretically and experimentally. The limiting factors, including the power dependency and temperature stability, of the sensing schemes are also investigated.

© 2001 IEEE

PDF Article

References

  • View by:
  • |

  1. C. A. Brackett, "Dense wavelength division multiplexing networks: Principles and applications", IEEE J. Select. Areas Commun., vol. 8, pp. 948-964, Aug. 1990.
  2. A. J. Keating and A. J. Lowery, "Wavelength stabilization in packet-switched WDM networks", J. Lightwave Technol., vol. 15, no. 1, pp. 76-85, 1997.
  3. M. Guy, B. Villeneuve, C. Latrasse and M. Tetu, "Simultaneous absolute frequency control of laser transmitters in both 1.3 and 1.55 mm bands for multiwavelength communication systems", J. Lightwave Technol., vol. 14, no. 6, pp. 1136-1143, 1996 .
  4. T. Ikegami, S. Sudo and Y. Sakai, Frequency Stabilization of Semiconductor Laser Diodes, Boston, MA: Artech House, 1995.
  5. L. E. Nelson, S. T. Cundiff and C. R. Giles, "Optical monitoring using data correlation for WDM systems", IEEE Photon. Technol. Lett., vol. 10, pp. 1030-1032, 1998.
  6. J. P. Monochalin, M. J. Kelly, J. E. Thomas, N. A. Kumit, A. Szoke, P. H. Lee and A. Javan, "Accurate laser wavelength measurement with a precision two-beam scanning Michelson interferometer", Appl. Opt. , vol. 20, no. 5, pp. 736-757, 1981.
  7. S. J. Bennett and P. Gill, "A digital interferometer for wavelength measurement", J. Phys., vol. 13, pp. 174 -177, 1980.
  8. M. B. Morris, T. J. McIlrath and J. J. Snyder, "Fizeau wavemeter for pulsed laser wavelength measurement", Appl. Opt., vol. 23, pp. 3862 -3868,
  9. T. Coroy, R. M. Measures, T. H. Wood and C. A. Burrus, "Active wavelength measurement system using an InGaAs-InP quantum-well electroabsorption filtering detector", IEEE Photon. Technol. Lett., vol. 8, pp. 1686 -1688, 1996.
  10. A. Densmore and P. E. Jessop, "A quantum-well waveguide photodetector for high-precision wavelength monitoring about 1.55 µ m", IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1653 -1655, 1999.
  11. S.-L. Lee, "Wavelength measurement and tracking using semiconductor laser amplifiers for applications in photonic networks", IEEE Photon. Technol. Lett., vol. 10, no. 3, pp. 439-441, 1998.
  12. S.-L. Lee, C.-T. Pien and Y.-Y. Hsu, "Wavelength monitoring in DWDM networks using low cost semiconductor laser diode/amplifiers", in Proc. Conf. Optical Fiber Communications 2000 (OFC), Baltimore, MD, Mar. 2000.
  13. D. Marcuse, "Heterodyne detection with an injection laser-Part I: Principle of operation and conversion efficiency", IEEE J. Quantum Electron. , vol. 26, no. 1, pp. 615-627, 1990.
  14. M. Gustavsson, A. Karlsson and L. Thylen, "Traveling wave semiconductor laser amplifier detectors", J. Lightwave Technol., vol. 8, no. 4, pp. 610-617, 1990.
  15. R. Hui, I. Maio and I. Montrosset, "Analysis of the all-electrical automatic gain control of traveling-wave semiconductor laser amplifiers", Proc. Inst. Elect. Eng. Optoelectron., vol. 141, no. 1, pp. 65-68, 1994.
  16. R. M. Fortenberry, A. J. Lowery and R. S. Tucker, "Up to 16 dB improvement in detected voltage using two-section semiconductor optical amplifier detector", Electron. Lett., vol. 28, no. 5, pp. 474-476, 1992.
  17. P. A. Andrekson, N. A. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz and H. Temkin, "Novel technique for determining internal loss of individual semiconductor lasers", Electron. Lett., vol. 29, no. 2, pp. 171-172, 1992.
  18. S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren and S. P. DenBarrs, "Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications", IEEE J. Select. Topics Quantum Electron., vol. 3, no. 2, pp. 615-627, 1997.
  19. S.-L. Lee, "Analytical formula of wavelength dependent transparent current and its implications for designing wavelength sensors and WDM lasers", IEEE J. Select. Topics Quantum Electron.,
  20. S.-L. Chuang, Physics of Optoelectronic Devices, New York: Wiley, 1985, ch. 10.
  21. T. Makino, "Analytical formulas for the optical gain of quantum wells", IEEE J. Quantum Electron., vol. 32, no. 3, pp. 493-501, 1996.
  22. A. B. Carlson, Communication Systems, 3rd ed. New York: McGraw-Hill, 1986, pp. 220-225.
  23. D. Derickson, Ed., Fiber Optic Test and Measurement, Englewood Cliffs, NJ: Prentice-Hall, 1998, p. 121.

Appl. Opt. (1)

Other (22)

C. A. Brackett, "Dense wavelength division multiplexing networks: Principles and applications", IEEE J. Select. Areas Commun., vol. 8, pp. 948-964, Aug. 1990.

A. J. Keating and A. J. Lowery, "Wavelength stabilization in packet-switched WDM networks", J. Lightwave Technol., vol. 15, no. 1, pp. 76-85, 1997.

M. Guy, B. Villeneuve, C. Latrasse and M. Tetu, "Simultaneous absolute frequency control of laser transmitters in both 1.3 and 1.55 mm bands for multiwavelength communication systems", J. Lightwave Technol., vol. 14, no. 6, pp. 1136-1143, 1996 .

T. Ikegami, S. Sudo and Y. Sakai, Frequency Stabilization of Semiconductor Laser Diodes, Boston, MA: Artech House, 1995.

L. E. Nelson, S. T. Cundiff and C. R. Giles, "Optical monitoring using data correlation for WDM systems", IEEE Photon. Technol. Lett., vol. 10, pp. 1030-1032, 1998.

J. P. Monochalin, M. J. Kelly, J. E. Thomas, N. A. Kumit, A. Szoke, P. H. Lee and A. Javan, "Accurate laser wavelength measurement with a precision two-beam scanning Michelson interferometer", Appl. Opt. , vol. 20, no. 5, pp. 736-757, 1981.

S. J. Bennett and P. Gill, "A digital interferometer for wavelength measurement", J. Phys., vol. 13, pp. 174 -177, 1980.

T. Coroy, R. M. Measures, T. H. Wood and C. A. Burrus, "Active wavelength measurement system using an InGaAs-InP quantum-well electroabsorption filtering detector", IEEE Photon. Technol. Lett., vol. 8, pp. 1686 -1688, 1996.

A. Densmore and P. E. Jessop, "A quantum-well waveguide photodetector for high-precision wavelength monitoring about 1.55 µ m", IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1653 -1655, 1999.

S.-L. Lee, "Wavelength measurement and tracking using semiconductor laser amplifiers for applications in photonic networks", IEEE Photon. Technol. Lett., vol. 10, no. 3, pp. 439-441, 1998.

S.-L. Lee, C.-T. Pien and Y.-Y. Hsu, "Wavelength monitoring in DWDM networks using low cost semiconductor laser diode/amplifiers", in Proc. Conf. Optical Fiber Communications 2000 (OFC), Baltimore, MD, Mar. 2000.

D. Marcuse, "Heterodyne detection with an injection laser-Part I: Principle of operation and conversion efficiency", IEEE J. Quantum Electron. , vol. 26, no. 1, pp. 615-627, 1990.

M. Gustavsson, A. Karlsson and L. Thylen, "Traveling wave semiconductor laser amplifier detectors", J. Lightwave Technol., vol. 8, no. 4, pp. 610-617, 1990.

R. Hui, I. Maio and I. Montrosset, "Analysis of the all-electrical automatic gain control of traveling-wave semiconductor laser amplifiers", Proc. Inst. Elect. Eng. Optoelectron., vol. 141, no. 1, pp. 65-68, 1994.

R. M. Fortenberry, A. J. Lowery and R. S. Tucker, "Up to 16 dB improvement in detected voltage using two-section semiconductor optical amplifier detector", Electron. Lett., vol. 28, no. 5, pp. 474-476, 1992.

P. A. Andrekson, N. A. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz and H. Temkin, "Novel technique for determining internal loss of individual semiconductor lasers", Electron. Lett., vol. 29, no. 2, pp. 171-172, 1992.

S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren and S. P. DenBarrs, "Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications", IEEE J. Select. Topics Quantum Electron., vol. 3, no. 2, pp. 615-627, 1997.

S.-L. Lee, "Analytical formula of wavelength dependent transparent current and its implications for designing wavelength sensors and WDM lasers", IEEE J. Select. Topics Quantum Electron.,

S.-L. Chuang, Physics of Optoelectronic Devices, New York: Wiley, 1985, ch. 10.

T. Makino, "Analytical formulas for the optical gain of quantum wells", IEEE J. Quantum Electron., vol. 32, no. 3, pp. 493-501, 1996.

A. B. Carlson, Communication Systems, 3rd ed. New York: McGraw-Hill, 1986, pp. 220-225.

D. Derickson, Ed., Fiber Optic Test and Measurement, Englewood Cliffs, NJ: Prentice-Hall, 1998, p. 121.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.