Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 19,
  • Issue 3,
  • pp. 405-
  • (2001)

Full-Vectorial Finite Element Beam Propagation Method with Perfectly Matched Layers for Anisotropic Optical Waveguides

Not Accessible

Your library or personal account may give you access

Abstract

Perfectly matched layer (PML) boundary conditions are incorporated into the full-vectorial beam propagation method (BPM) based on a finite element scheme for the three-dimensional (3-D) anisotropic optical waveguide analysis. In the present approach, edge elements based on linear-tangential and quadratic-normal vector basis functions are used for the transverse field components. To show the validity and usefulness of this approach, numerical examples are shown for Gaussian beam propagation in proton-exchanged LiNbO3 optical waveguides. Numerical accuracy of the present PML boundary condition is investigated in detail by comparing the results with those of the conventional absorbing boundary condition (ABC).

[IEEE ]

PDF Article
More Like This
Full-vectorial meshless finite cloud method for an anisotropic optical waveguide analysis

Xiaoer Wu and Jinbiao Xiao
Opt. Express 29(22) 35271-35287 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.