Abstract

Small-signal amplification in short, Yb3+-sensitized, Er3+-doped alumina (Al2O3) channel optical waveguides with high Er3+ concentrations is analyzed. Taking into account uniform up-conversion, excited state absorption (ESA) from the Er3+ metastable level (4I13/2), and Yb3+ -> Er3+ energy transfer by cross relaxation, the obtainable gain improvements compared to Yb3+-free Er3+-doped Al2O3 optical waveguides are investigated. The amplifier model is based on propagation and population rate equations and is solved numerically by combining finite elements and the Runge-Kutta algorithm. The analysis predicts that 5-cm long Yb3+/Er3+ co-doped Al2O3 waveguides show 13-dB net signal gain for 100 mW pump power at p = 980nm.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription