Abstract

We report propagation loss measurements in single-mode GaAs-AlGaAs racetrack microresonators with bending radii from 2.7 m to 9.7 m. The experimental data were found to be in good agreement with a physical-loss model which accounts for the bending loss, the scattering loss due to surface roughness on the waveguide sidewalls, and the transition loss at the straight-to-bend waveguide junctions. The model also enables us to identify the dominant loss mechanisms in semiconductor microcavities. We found that for racetracks with large bending radii (greater than 4 m, in our case) the loss due to surface-roughness scattering in the curved waveguides dominates,whereas for small-radius rings, the modal mismatch at the straight-to-bend waveguide junctions causes the biggest loss. This result suggests that circular-shaped rings are preferable in the realization of ultrasmall low-loss microcavities. We also show that the round-trip propagation loss in small-radius racetrack microresonators can be minimized by introducing a lateral offset at the straight-to-bend waveguide junctions.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription