Abstract

The crosstalk performance of an arrayed-waveguide grating (AWG) multiplexer or demultiplexer is primarily caused by random optical phase errors introduced in the arrayed waveguides. Because the layout of waveguides on a wafer is patterned via photomask through the photolithography process, the resolution of a photomask has a direct influence on the phase errors of an AWG. This paper presents a theoretical analysis on the phase error caused by photomask resolution and other basic design parameters. Both calculation and measurement results show that a high-resolution photomask (better than 25 nm) is a critical requirement to produce low-crosstalk (less than -30 dB) AWG demultiplexers. We also investigate the effect of nonideal power distribution in the arrayed waveguides because it contributes considerable phase errors when material impurity is not well controlled during wafer fabrication. Basic criteria of power profile truncation, number of grating waveguides, and material index variation are also summarized.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription