Abstract

A unified approach using curvilinear hybrid edge/nodal elements with triangular shape is, for the first time, described for the study of guided-wave problems. Not only the lowest order (fundamental) but the higher order elements are systematically constructed. The advantage of curvilinear elements lies in the fact that they can model curved boundaries with more accuracy and lesser number of degrees of freedom than rectilinear elements. The vector basis functions derived here are also applicable to rectilinear cases. To show the validity and usefulness of the present approach, computed results are illustrated for rib waveguides with straight boundaries and circular waveguides with large refractive-index differences.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription