Abstract

As data traffic increases exponentially in the Internet, a need of deploying ATM switches or IP routers with terabit/s capacity is emerging. By taking advantage of the advanced wavelength division multiplexing (WDM) technology, we propose a nonblocking WDM-based optical interconnection network (OIN) to interconnect multiple electronic router modules (RMs), where packets are stored and processed. The proposed architecture uses an input-output buffering scheme, where the OIN operates at twice the line rates to alleviate the head-of-line blocking and thus achieves close to 100% throughput. The OIN is capable of performing multicasting using the method of broadcast and select. Output port contention among the input packets is resolved by a novel ping-pong arbitration (PPA) scheme. For a 256-input packet switch, the arbitration can be completed within 11 gates delay, less than 5 ns using the current CMOS technology. We analyze the complexity of the OIN in optical components and interconnections,its power budget, and crosstalk caused by the finite ON-OFF ratio of optical switching gates. Bit error rates with respect to different ON-OFF ratios and extinction ratios are evaluated by simulations. The result shows that it is feasible to construct a 256 x 256 OIN with existing technology.

© 2000 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription