Abstract

An ultra-low latency, high throughput internet protocol (IP) over wavelength division multiplexing (WDM) packet switching technology for next-generation internet (NGI) applications has been designed and demonstrated. This method overcomes limitations of conventional optical packet switching,which require buffering of packets and synchronization of bits, and optical burst switching methods that require estimation of delays at each node and for each path. An optical label switching technique was developed to realize flexible bandwidth-on-demand packet transport on a reconfigurable WDM network. The aim was to design a network with simplified protocol stacks, scalability,and data transparency. This network will enable the NGI users to send their data applications at gigabit/second access speed with low and predictable latency (< 1 µsec per switch node), with a system capacity of beyond multi-Tb/s. Packet forwarding utilizes WDM optical headers that are carried in-band on the same wavelength and modulated out-of-band in the frequency domain.

© 2000 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription