Abstract

A new micromachining process for large-scale optical cross-connects is presented. It satisfies the high-accuracy optical alignment required for free-space optics. A self-aligned batch-process allowing the simultaneous fabrication of vertical mirrors and fiber guides is performed with only one-mask. This process is based on bulk micromachining of (100) silicon. A first demonstration is performed on a 2 x 2 elementary cell then, it is extended to the fabrication of larger mirror arrays. Promising performances such as insertion loss lower than 0.5 dB, sub-millisecond switching time (0.3 ms) and reliable operation (more than 20 million cycles) are demonstrated on a bypass switch. An improved fabrication process, leading to an increase of integration density is also presented. It is based on the combination of deep dry-etching and anisotropic wet-etching.

© 2000 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription