Multicasting in the optical domain has been recently shown to provide substantial savings in terms of the network-wide average packet hop distance and the total number of transceivers in the network. Current proposed multicasting architectures [e.g., Splitter-and-Delivery (SaD)] employ power splitting mechanisms which have the side effect of high fabrication cost due to the large number of splitters and the need for optical amplifiers. We propose a low-cost novel architecture called Tap-and-Continue (TaC) for realizing multicasting. This architecture provides a natural evolution from current unicast cross-connects and is based on tapping devices. We prove that any multicasting session can be feasibly realized in networks employing only TaC cross-connects, and the problem of finding the optimal multiple-destination minimum cost trail in such networks is NP-complete. Therefore, we develop a 4-approximation algorithm for multiple-destination routing. Simulation results demonstrate that the TaC cross-connect provides a realistic, cost-effective approach for implementing multicasting with negligible blocking degradation especially in multifiber networks.


PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription