Abstract

In this paper, we report a novel configuration of resonator microoptic gyro (MOG), which is monolithically integrated on silica planar lightwave circuit (PLC) with countermeasures for noise factors. Optical ring-resonator gyros suffer mainly from polarization fluctuation induced noise and backscattering induced noise. We discuss eigenstate of polarization in the waveguide to clarify behavior of the former and propose a countermeasure with control of the waveguide birefringence. As for the latter, binary phase shift keying (B-PSK) with a special signal processing is proposed. Thermooptic (TO) phase modulation is the only one scheme to apply B-PSK in the silica waveguide, whose bandwidth is limited to ~1 KHz. To utilize the narrow bandwidth of the TO modulator effectively, we propose an electrical signal processing scheme and a modulation waveform to compensate the frequency response. By constructing an experimental setup, suppression of the backscattering induced noise is demonstrated, and the gyro output is observed with applying an equivalent rotation.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription