Abstract

Bi-end dispersion compensation (DC) for ultralong nonreturn-to-zero (NRZ) optical transmission system is studied. Both the loss and dispersion of the transmission fiber are periodically compensated. Two dispersive elements are placed at the input and output ends of a compensation period, respectively, to compensate for fiber dispersion. The pulse compression owing to self-phase modulation (SPM) can be adjusted by the compensation ratios of the dispersive elements at the two ends of a compensation period. Therefore, the pulse compression can be optimized and the system performance can be improved to compare with the system with either pre- or postdispersion compensation. The rules to design the system are considered. The transmission system of 10-Gb/s bit rate, 9000-km transmission distance, and 100-km compensation period is taken as an example. The second-order fiber dispersion is assumed to be completely compensated. Wave equation is numerically solved to study the system performance which is represented by Q factor. The relations of several system parameters and Q factor are studied. The system parameters include the compensation ratios of the dispersive elements at the two ends of a compensation period, dispersion of transmission fiber, signal power, and the compensation ratios of third-order fiber dispersion. If the third-order fiber dispersion cannot be completely compensated, it is found that one can use a higher signal power to improve the system performance.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription