Abstract

A finite element beam propagation method (BPM) for anisotropic optical waveguides is newly formulated. In order to treat a wide-angle beam propagation, Pade approximant operator is employed and to avoid nonphysical reflection from computational window edges, a transparent boundary condition is extended to anisotropic materials. To show the validity and usefulness of this approach, the numerical results for an anisotropic planar waveguide and a magnetooptic channel waveguide are presented.

[IEEE ]

PDF Article

References

  • View by:
  • |

  1. H.-P. Nolting and R. M rz, "Results of benchmark tests for different numerical BPM algorithms," J. Lightwave Technol., vol. 13, pp. 216-224, Feb. 1995.
  2. Y. Arai, A. Maruta, and M. Matsuhara, "Transparent boundary for the finite-element beam-propagation method," Opt. Lett., vol. 18, pp. 765-766, May 1993.
  3. F. Schmidt, "An adaptive approach to the numerical solution of Fresnel's wave equation," J. Lightwave Technol., vol. 11, pp. 1425-1434, Sept. 1993.
  4. H. E. Hernandez-Figueroa, "Simple nonparaxial beam-propagation method for integrated optics," J. Lightwave Technol., vol. 12, pp. 644-649, Apr. 1994.
  5. Y. Tsuji, M. Koshiba, and T. Shiraishi, "Finite element beam propagation method for three-dimensional optical waveguide structures," J. Lightwave Technol., vol. 15, pp. 1728-1734, Feb. 1997.
  6. Y. Tsuji and M. Koshiba, "A finite-element beam-propagation method for strongly guiding and longitudinally varying optical waveguides," J. Lightwave Technol., vol. 14, pp. 217-222, Feb. 1996.
  7. L. Thylen and D. Yevick, "Beam propagation method in anisotropic media," Appl. Opt., vol. 21, pp. 2751-2754, Aug. 1982.
  8. J. A. Fleck, Jr. and M. D. Feit, "Beam propagation in uniaxial anisotropic media," J. Opt. Soc. Am., vol. 73, pp. 920-926, July 1983.
  9. C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, "A full-vectorial beam propagation method for anisotropic waveguides," J. Lightwave Technol., vol. 12, pp. 1926-1931, Nov. 1994.
  10. G. R. Hadley, "Wide-angle beam propagation using Pade approximant operators," Opt. Lett., vol. 17, pp. 1426-1428, Oct. 1992.
  11. --, "Transparent boundary condition for beam propagation method," Opt. Lett., vol. 16, pp. 624-626, May 1991.

Appl. Opt. (1)

J. Lightwave Technol. (6)

H.-P. Nolting and R. M rz, "Results of benchmark tests for different numerical BPM algorithms," J. Lightwave Technol., vol. 13, pp. 216-224, Feb. 1995.

F. Schmidt, "An adaptive approach to the numerical solution of Fresnel's wave equation," J. Lightwave Technol., vol. 11, pp. 1425-1434, Sept. 1993.

H. E. Hernandez-Figueroa, "Simple nonparaxial beam-propagation method for integrated optics," J. Lightwave Technol., vol. 12, pp. 644-649, Apr. 1994.

Y. Tsuji, M. Koshiba, and T. Shiraishi, "Finite element beam propagation method for three-dimensional optical waveguide structures," J. Lightwave Technol., vol. 15, pp. 1728-1734, Feb. 1997.

Y. Tsuji and M. Koshiba, "A finite-element beam-propagation method for strongly guiding and longitudinally varying optical waveguides," J. Lightwave Technol., vol. 14, pp. 217-222, Feb. 1996.

C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, "A full-vectorial beam propagation method for anisotropic waveguides," J. Lightwave Technol., vol. 12, pp. 1926-1931, Nov. 1994.

J. Opt. Soc. Am. (1)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.