Abstract

The dynamic behavior of single-channel transmission on standard fibers with strong dispersion management has been theoretically and numerically analyzed. A single pulse and a pseudorandom pulse sequence have been compared in order to highlight the relevant role played by pulse interaction. A semi-analytical theory of the bandwidth evolution demonstrates that the introduction of prechirp is very important for controlling the single pulse propagation and numerical results show that such a chirp also permits to limit the nonlinear pulse interaction when other pulses are present. Simulations of a 40 Gb/s return-to-zero (RZ) system operating in links encompassing step-index fibers, by adopting a periodical compensation of the chromatic dispersion have been performed and results show that a record distance of 1300 km can be achieved with an amplifier spacing of 100 km. A compensation of the fiber third order dispersion would extend the transmission to 1800 km, which corresponds to the limits imposed by the amplified spontaneous emission (ASE) noise of the optical amplifiers.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription