Abstract

A strong enhancement of the spontaneous emission rate (Purcell effect) has been observed for self-assembled InAs/GaAs quantum boxes inserted in GaAs-based pillar microcavities ( 5) and microdisks ( 15) using time-resolved as well as c.w. photoluminescence experiments. We show that the magnitude of the Purcell effect can be quantitatively understood by considering both the Purcell figure of merit Fp of such cavities (Fp>>1) and the spatial/spectral distribution of the inhomogeneous collection of atom-like emitters. These results open the way to the development of single-photon devices such as photon-guns or photon-turnstiles, able to emit photons one-by-one in a deterministic way.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription