Abstract

Novel and highly sensitive static strain interrogation technique is demonstrated, where the sensing element is a fiber-Bragg grating (FBG) and the light source is a frequency-locked diode laser. Locking the laser frequency to the center of an absorption line (atomic line of potassium in our experiment) eliminates the slow frequency drift of the laser. The stabilized laser source is used to measure low frequency ("static") strain, with a sensitivity of 1.2 nanostrain/{\sqrt Hz } rms at 1.5 Hz.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription