Abstract

Novel and highly sensitive static strain interrogation technique is demonstrated, where the sensing element is a fiber-Bragg grating (FBG) and the light source is a frequency-locked diode laser. Locking the laser frequency to the center of an absorption line (atomic line of potassium in our experiment) eliminates the slow frequency drift of the laser. The stabilized laser source is used to measure low frequency ("static") strain, with a sensitivity of 1.2 nanostrain/{\sqrt Hz } rms at 1.5 Hz.

[IEEE ]

PDF Article

References

  • View by:
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. J. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol., vol. 15, pp. 1442-1463, 1997.
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Fiber-optic Bragg gratin strain sensor with drift-compensated high resolution interferometric wavelength-shift detection," Opt. Lett., vol. 18, pp. 72-74, 1993.
  3. K. P. Koo and A. D. Kersey, "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol., vol. 13, pp. 1243-1249, 1995.
  4. H. Furuta and M. Ohtsu, "Evaluations of frequency shift and stability in rubidium vapor stabilized semiconductor laser," Appl. Opt., vol. 28, pp. 3737-3743, 1989.
  5. B. Lissak, A. Arie, and M. Tur, "Highly sensitive dynamic strain measurements by locking lasers to fiber-Bragg gratings," Opt. Lett., vol. 23, pp. 1930-1932, 1998.
  6. V. Mahal, A. Arie, M. A. Arbore, and M. M. Fejer, "Quasiphase-matched frequency doubling in a waveguide of a 1560 nm diode laser and locking to the rubidium D2 absorption lines," Opt. Lett., vol. 21, pp. 1217-1219, 1996.
  7. A. Bruner, A. Arie, M. A. Arbore, and M. M. Fejer, "Frequency stabilization of a diode laser at 1540 nm by locking to sub-Doppler lines of potassium at 770 nm," Appl. Opt., vol. 37, pp. 1049-1052, 1998.
  8. M. A. Arbore and M. M. Fejer, "Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides," Opt. Lett., vol. 22, pp. 151-153, 1997.
  9. A. Bruner, V. Mahal, I. Kiryuschev, A. Arie, M. A. Arbore, and M. M. Fejer, "Frequency stability at the kilohertz level of a rubidium-locked diode laser at 192.114 THz," Appl. Opt., vol. 37, pp. 6410-6414, 1998.
  10. E. J. Friebele, M. A. Putnam, H. J. Patric, A. D. Kersey, A. S. Greenblatt, G. P. Ruthven, M. H. Krim, and K. S. Gottschalck, "Ultrahigh sensitivity fiber-optic strain and temperature sensor," Opt. Lett., vol. 23, pp. 222-224, 1998.

Appl. Opt. (3)

J. Lightwave Technol. (2)

K. P. Koo and A. D. Kersey, "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol., vol. 13, pp. 1243-1249, 1995.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. J. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol., vol. 15, pp. 1442-1463, 1997.

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.