Abstract

This paper details an accurate method for computation of bending losses in rectangular optical waveguides which we combine with perturbation theory to account for the fields in the (outer) corner regions of the guiding channel. In the case of the weakly guiding channels of interest in optical signal processing, the correction to the loss coefficient due to the corner fields is shown to be in excess of 50%.

[IEEE ]

PDF Article

References

  • View by:
  • |

  1. L. D. Hutcheson, I. A. White, and J. Burke, "Comparison of bending losses in integrated optical circuits," Opt. Lett., vol. 5, pp. 276-278, 1980.
  2. K. Thyagarajan, M. R. Shenoy, and A. K. Ghatak, "Accurate numerical method for the calculation of bending loss in optical waveguides using a matrix approach," Opt. Lett., vol. 12, pp. 296-298, 1987; see also "Erratum," Opt. Lett., vol. 14, p. 338, 1989.
  3. I. C. Goyal, R. L. Gallawa, and A. K. Ghatak, "Bent planar waveguides and whispering gallery modes; a new method of analysis," J. Lightwave Technol., vol. 8, pp. 768-773, 1990.
  4. A. Kumar and R. L. Gallawa, "Bending-induced loss in dual-mode rectangular waveguides," Opt. Lett., vol. 19, pp. 707-709, 1994.
  5. A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, "Numerical analysis of planar optical waveguides using matrix approach," J. Lightwave Technol., vol. 5, pp. 660-667, 1987. A. K. Ghatak, Opt. Quantum Electron., vol. 17, pp. 311-317, 1985.

J. Lightwave Technol. (2)

I. C. Goyal, R. L. Gallawa, and A. K. Ghatak, "Bent planar waveguides and whispering gallery modes; a new method of analysis," J. Lightwave Technol., vol. 8, pp. 768-773, 1990.

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, "Numerical analysis of planar optical waveguides using matrix approach," J. Lightwave Technol., vol. 5, pp. 660-667, 1987. A. K. Ghatak, Opt. Quantum Electron., vol. 17, pp. 311-317, 1985.

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.