Abstract

An integrated, cascaded, asymmetric GaAs/AlGaAs Mach-Zehnder (MZ) interferometer, for use in wavelength filtering and time-domain multiplexing, has been designed, fabricated, and tested. This device employs several new passive components, including height-tapered Y-branches, for uniform splitting and recombining, and index-tailored waveguide bends, for low-loss operation. The waveguide bend is designed with a predistorted index profile for minimizing both transition loss and radiation loss. The circuit is fabricated with a resistless, light-induced local etching technique, which enables rapid iterative fabrication of the device geometry to achieve the desired operating path delays. Acting as a wavelength filter, the fabricated device has a {-}24.3 dB minimum-to-maximum extinction ratio and a {-}10.5 dB side-lobe suppression ratio. Acting as a pulse-rate multiplexer, the device generates a four-pulse train with a 10-ps pulse-to-pulse separation and an amplitude uniformity of 80% for each input pulse.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription