Abstract

Intensity noise resulting from the phase modulation to intensity modulation conversion of laser phase noise can be a major impairment in direct detection systems. In this paper, we investigate theoretically and experimentally the influence of fiber nonlinearity on the conversion of laser and optical amplifier phase noise to intensity noise by fiber transmission. Very good agreement of relative intensity noise (RIN) spectra at the output of a standard singlemode fiber between experimental data and theoretical predictions has been achieved. Results reveal that the fiber nonlinearity can enhance significantly the RIN magnitude and lead to a shift of the RIN dips toward higher frequencies, and consequently to a broader RIN spectrum at fiber output.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription