Abstract

Parametric gain (PG) in optical fibers may substantially enhance amplified spontaneous emission (ASE) noise, especially in long-haul amplified links. We present new results that permit to accurately characterize the effects of PG on ASE noise, as well as the interplay of PG and ASE noise with fiber dispersion in both the anomalous and normal dispersion regions. In a recent letter [1], we introduced the concept of a PG transfer matrix, that allows the easy evaluation of ASE noise enhancement over chains of amplified fiber spans. In the same letter we showed that the transfer matrix can be expressed in analytical closed-form when a scalar (single polarization) fiber is assumed. In this paper we extend the analysis to a more realistic two-polarization fiber model that accounts for both linear and nonlinear polarization coupling effects. We show that the new transfer matrix does not have an analytical expression, but can be easily evaluated using standard numerical algorithms. ASE noise enhancement due to PG turns out to be slightly lower in a realistic birefringent two-polarization fiber than a single-polarization fiber. An interesting result is that the single polarization model yields a convenient approximation to ASE noise enhancement, that can be evaluated analytically.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription