Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 16,
  • Issue 6,
  • pp. 1056-
  • (1998)

Very Large Arrays of Flip-Chip Bonded 1.55 \mum Photodetectors

Not Accessible

Your library or personal account may give you access

Abstract

We present very large arrays of InGaAs/InP p-i-n photodetectors flip-chip bonded to Si. The photodiodes are designed for operation at zero bias, e.g., for spectroscopic applications. Our design maintains depletion at zero bias resulting in \sim99% photocurrent collection efficiency. The series resistance of our photodiodes is <1 for a 40\;\times\;40 \mum device, including the flip-chip bond, resulting in high tolerance to shunt leakage. We produce arrays of photodiodes as large as 120 and measure leakage currents. We analyze zero-bias photocurrent generation in the presence of leakage and determine that with this technology arrays as large as 128 can be produced with high yield. The concept of redundancy in zero-bias photodiode arrays is presented and explored. Under the assumption that photodiode leakage is produced by microscopic point defects, a substantial increase in uniformity can be achieved in photodetector arrays by employing redundancy.

[IEEE ]

PDF Article
More Like This
Evaluation of flip-chip bonding electrical connectivity for ultra-large array infrared detector

Huihao Li, Jindong Wang, Yan Chen, Qingjun Liao, Changhong Sun, and Zhenhua Ye
Opt. Express 32(7) 10777-10785 (2024)

Systematic prediction method for flip-chip bonding connectivity of ultra-large array infrared detector

Huihao Li, Jindong Wang, Yan Chen, Qingjun Liao, Changhong Sun, and Zhenhua Ye
Opt. Express 32(7) 10841-10850 (2024)

High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode

Zhi Li, Yang Fu, Molly Piels, Huapu Pan, Andreas Beling, John E. Bowers, and Joe C. Campbell
Opt. Express 19(26) B385-B390 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved