Abstract

Device characteristics of optical polarization rotators are founded upon the vector properties of the Maxwell Equations. Recently, a bending waveguide based polarization rotator has been proposed and demonstrated. To provide a rigorous basis for the analysis and design of this polarization rotator, the full-vectorial wave equations for both {\vec{E}}- and {\vec{H}}-field in bending waveguides are derived. It is found from these wave equations that under a broad range of circumstances, a bending waveguide can be analyzed using the equivalent straight waveguide approximation. Details of the model for optical polarization rotators, which is based on the coupled-mode theory, will be described in a companion paper.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription