Abstract

The alternating-direction implicit method proposed by McKee-Mitchell is applied to full-vectorial paraxial wave equations. The high computational efficiency of the present method is demonstrated in comparison with an iterative solver. Novel finite-difference formulas that take into account discontinuities of the fields are proposed and employed to ensure second-order accuracy. Calculations regarding the effective index of rib waveguides show that the present results remarkably agree with values obtained from the modal transverse resonance method.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription