Abstract

This paper investigates possibilities for the practical design of high-performance multimode fibers (MMFs) that can provide bandwidths in excess of 10 GHz ...km in an overfilled regime of operation. Analysis of standard MMF in an overfilled launch demonstrates that the theoretical bandwidth limitations arise from the influence of cladding on the propagation of the highest order modes. Practical MMF profile designs that overcome this problem are investigated. The standard 50-and 62.5- µm fiber profiles are redesigned first to allow for the performance in an overfilled launch with the differential mode delays (DMDs) below 0.055 and 0.250 ns/km, respectively. It is shown that such fibers can exhibit the same or better theoretical bandwidth in an overfilled launch when compared to standard fiber under restricted launch. Elimination of the need for the restricted mode launch in high-performance multimode transmission systems can improve reliability issues and can relax the range of tolerance requirements imposed on terminal equipment, optical components, and link installation. Furthermore, MMFs that can be operated in an overfilled launched are compatible with emerging vertical cavity surface emitting laser (VCSEL) wavelength division multiplexing (WDM) array technologies. A successfully controlled higher order mode DMD also allows for the reduction of MMF core size and mit Delta that can be beneficial for low-cost high-performance single-channel links. It is demonstrated that properly designed reduced core fibers can achieve theoretical DMDs in the range of 0.005-0.02 ns/km. The bend loss properties of redesigned fibers are investigated in detail, showing that the proposed modifications do not lead to significant degradation of bend loss performance. Moreover, they can be manufactured at considerably lower cost while utilizing commercially readily available low-cost VCSELs. Even where the theoretical limit is not achieved by practical fiber making, the reduced core size and mit Delta MMF can provide higher production yield, lower cost, and higher average bandwidth.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. L. Raddatz and I. H. White, "Overcoming the modal bandwidth limitation of multimode fiber by using passband modulation", IEEE Photon. Technol. Lett., vol. 11, no. 2, pp. 266-268, Feb. 1999.
  2. T. K. Woodward, S. Hunsche, A. J. Ritger and J. B. Stark, "1-Gb/s BPSK transmission at 850 nm over 1 km of 62.5- µm -core multimode fiber using a single 2.5-GHz subcarrier", IEEE Photon. Technol. Lett., vol. 11, no. 3, pp. 382-384, Mar. 1999.
  3. E. J. Tyler, P. Kourtessis, M. Webster, E. Rochart, T. Quinlan, S. E. M. Dudley, S. D. Walker, R. V. Penty and I. H. White, "Toward terabit-per-second capacities over multimode fiber links using SCM/WDM techniques", J. Lightw. Technol., vol. 21, no. 12, pp. 3237-3243, Dec. 2003.
  4. E. J. Tyler, M. Webster, R. V. Penty, I. H. White, S. Yu and J. Rorison, "Subcarrier modulated transmission of 2.5 Gb/s over 300 m of 62.5- µm -core diameter multimode fiber", IEEE Photon. Technol. Lett., vol. 14, no. 12, pp. 1743-1745, Dec. 2002.
  5. E. J. Tyler, M. Webster, R. V. Penty and I. H. White, "Penalty free subcarrier modulated multimode fiber links for datacom applications beyond the bandwidth limit", IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 110-112, Jan. 2002.
  6. K. M. Patel and S. E. Ralph, "Enhanced multimode fiber link performance using a spatially resolved receiver", IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 393-395, Mar. 2002.
  7. X. Zhao and F. S. Choa, "Demonstration of 10-Gb/s transmissions over a 1.5-km-long multimode fiber using equalization techniques", IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1187-1189, Aug. 2002.
  8. J. S. Abbott, G. E. Smith and C. M. Truesdale, "Multimode fiber link dispersion compensator", U.S. Patent 6 363 195, Mar. 26, 2002.
  9. P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis and G. Kuyt, "15.6-Gb/s transmission over 1 km of next generation multimode fiber", IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 717-719, May 2002.
  10. Z. Haas and M. A. Santoro, "Mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems", J. Lightw. Technol., vol. 11, no. 7, pp. 1125-1131, Jul. 1993.
  11. J. B. Schlager, M. J. Hackert, P. Pepeljugoski and J. Gwinn, "Measurements for enhanced bandwidth performance over 62.5- µm multimode fiber in short-wavelength local area networks", J. Lightw. Technol., vol. 21, no. 5, pp. 1276-1285, May 2003.
  12. P. Pepeljugoski, M. J. Hackert, J. S. Abbott, S. E. Swanson, S. E. Golowich, A. J. Ritger, P. Kolesar, Y. C. Chen and P. Pleunis, "Development of system specification for laser-optimized 50-um multimode fiber for multigigabit short-wavelength LANs", J. Lightw. Technol., vol. 21, no. 5, pp. 1256-1275, May 2003.
  13. P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar and A. Risteski, "Modeling and simulation of next-generation multimode fiber links", J. Lightw. Technol., vol. 21, no. 5, pp. 1242-1255, May 2003.
  14. M. Webster, L. Raddatz, I. H. White and D. G. Cunningham, "A statistical analysis of conditioned launch for gigabit Ethernet links using multimode fiber", J. Lightw. Technol., vol. 17, no. 9, pp. 1532-1541, Sep. 1999.
  15. C. A. Bunge, J. R. Kropp and K. Petermann, "Study of simplified test procedure for 10-GB-Ethernet fibers", IEEE Photon. Technol. Lett., vol. 14, no. 11, pp. 1539-1541, Nov. 2002.
  16. G. C. Papen and G. M. Murphy, "Modal noise in multimode fibers under restricted launch conditions", J. Lightw. Technol., vol. 17, no. 5, pp. 817-822, May 1999.
  17. "IEEE Standard for Information Technology-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications",
  18. M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto and F. Koyama, "Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span", IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 5, pp. 1367-1373, Sep./Oct. 2003.
  19. C. Jung, R. King, R. Jager, M. Grabherr, F. Eberhard, R. Michalzik and K. J. Ebeling, "Highly efficient oxide-confined VCSEL arrays for parallel optical interconnects", J. Opt., A Pure Appl. Opt., vol. 1, no. 2, pp. 272-275, Mar. 1999.
  20. R. Michalzik, R. King, F. Mederer, M. Kicherer, G. Giaretta and K. J. Ebeling, "Short-wavelength vertical-cavity surface-emitting laser applications: From high-throughput multimode fiber links to two-dimensional interchip interconnections", Opt. Eng., vol. 40, no. 7, pp. 1179-1185, 2001.
  21. S. Nakagawa, S. Y. Hu, D. Louderback and L. A. Coldren, "RF crosstalk in multiple-wavelength vertical-cavity surface-emitting laser arrays", IEEE Photon. Technol. Lett., vol. 2, no. 6, pp. 612-614, Jun. 2000.
  22. Y. X. Zhou and J. L. Cheng, "1-Gb/s-per-channel wavelength division multiplexed optical interconnect using wavelength-graded VCSEL and resonant photodetector arrays", IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 740-742, Jun. 2000.
  23. Y. G. Ju, D. Lofgreen, A. Fiore, S. Y. Hu, E. Hegblom, D. Louderback, O. Sjolund, A. Huntington and L. A. Coldren, "Densely packed PIE shaped vertical-cavity surface-emitting laser array incorporating a tapered one-dimensional wet oxidation", IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 462-464, May 2000.
  24. Y. X. Zhou, J. Cheng and A. A. Allerman, "High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strained InGaAs quantum wells", IEEE Photon. Technol. Lett., vol. 12, no. 2, pp. 122-124, Feb. 2000.
  25. S. Y. Yu, J. Ko and E. R. Hegblom, et al. "Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays", IEEE J. Quantum Electron., vol. 34, no. 8, pp. 1403-1414, Aug. 1998.
  26. A. Onomura, M. Arai, T. Kondo, A. Matsutani, T. Miyamoto and F. Koyama, "Densely integrated multiple-wavelength vertical-cavity surface-emitting laser array", Jpn. J. Appl. Phys. 2, Lett., vol. 42, no. 5B, pp. L529-L531, 2003.
  27. K. M. Geib, K. D. Choquette, D. K. Serkland, A. A. Allerman and T. W. Hargett, "Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonant cavity photodetectors", IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 4, pp. 943-947, Jul./Aug. 2002.
  28. K. Katsura, M. Usui, N. Sato, A. Ohki, N. Tanaka, N. Matsuura, T. Kagawa, K. Tateno, M. Hikita, R. Yoshimura and Y. Ando, "Packaging for a 40-channel parallel optical interconnection module with an over-25-Gbit/s throughput", IEEE Trans. Adv. Packag., vol. 22, no. 4, pp. 551-560, Nov. 1999.
  29. H. Kosaka, "Smart integration and packaging of 2-D VCSEL's for high-speed parallel links", IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 2, pp. 184-192, Mar./Apr. 1999.
  30. B. E. Lemoff, M. E. Ali, G. Panotopoulos, E. de Groot, G. M. Flower, G. H. Rankin, A. J. Schmit, K. D. Djordjev, M. R. T. Tan, A. Tandon, W. Gong, R. P. Tella, B. Law, L.-K. Chia and D. W. Dolfi, "Demonstration of a compact low-power 250-Gb/s parallel-WDM optical interconnect", IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 220-222, Jan. 2005.
  31. S.-Y. Hu, J. Ko, E. R. Hegblom and L. A. Coldren, "Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays", IEEE J. Quantum Electron., vol. 34, no. 8, pp. 1403-1414, Aug. 1998.
  32. "Optical Interconnects Group at Agilent Laboratories",
  33. K. Okamoto and T. Okoshi, "Analysis of wave propagation in optical fibers having core with alpha -power refractive-index distribution and uniform cladding", IEEE Trans. Microw. Theory Tech., vol. MTT-24, no. 7, pp. 416-421, Mar. 1976.
  34. K. Okamoto and T. Okoshi, "Computer-aided synthesis of the optimum refractive-index profile for a multimode fiber", IEEE Trans. Microw. Theory Tech., vol. MTT-25, no. 3, pp. 213-221, Mar. 1977.
  35. B. Stolz and D. Yevick, "Correcting multimode fiber profiles with differential mode delay", J. Opt. Commun., vol. 4, no. 4, pp. 139-147, 1983.
  36. "OptiFiber, Optical fiber design software", Optiwave Inc., Ottawa, Canada,
  37. K. Oyamada and T. Okoshi, "High-accuracy numerical data on propagation characteristics of a-power graded-core fibers", IEEE Trans. Microw. Theory Tech., vol. MTT-28, no. 10, pp. 1113-1118, Oct. 1980.
  38. T. Ishigure, H. Endo, K. Ohdoko and Y. Koike, "High-bandwidth plastic optical fiber with W-refractive index profile", IEEE Photon. Technol. Lett., vol. 16, no. 9, pp. 2081-2083, Sep. 2004.
  39. T. Li, Ed. Optical Fiber Communications, New York: Academic, 1985,vol. 1, p. 2.
  40. S. R. Nagel, "Fiber materials and fabrication methods," in Optical Fiber Communications II, S. E. Miller Ed. New York: Academic, 1988, pp. 121-215.
  41. M. Kyoto, M. Ito, Y. Ishiguro, H. Kanamori, Y. Ohoga and S. Ishikawa, "Study of fluorine doping during vapour-phase axial deposition sintering process", J. Mater. Sci., vol. 31, no. 9, pp. 2481-2486, 1996.
  42. J. Kirchhof, et al. "About the fluorine chemistry in MCVD: The mechanism of fluorine incorporation", Cryst. Res. Technol., vol. 22, no. 4, pp. 495-501, 1987.
  43. A. Marshall and K. R. Hallam, "Fluorine doping and etching reactions of Freon 12 in optic fiber manufacture", J. Lightw. Technol., vol. LT-4, no. 7, pp. 746-750, Jul. 1986.
  44. C. Cocito, L. Cognolato, E. Modone and G. Parisi, "Fluorine doping in MCVD optical fibers", Torino, Italy, vol. XVI, no. 4, 1988.
  45. J. Kirchhof, et al. "A new MCVD technique for increased efficiency of dopant incorporation in optical fiber fabrication", Cryst. Res. Technol., vol. 25, no. 2, pp. K29-K34, 1990.
  46. D. Donlagic and B. Culshaw, "Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber", J. Lightw. Technol., vol. 17, no. 10, pp. 1856-1868, Oct. 1999.
  47. D. Donlagic and B. Culshaw, "Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems", J. Lightw. Technol., vol. 18, no. 3, pp. 334-342, Mar. 2000.
  48. D. Donlagic and B. Culshaw, "Low-loss transmission through tightly bent standard telecommunication fibers", Appl. Phys. Lett., vol. 77, no. 24, pp. 3911-3913, 2000.
  49. D. Donlagic, "Optical transmission link with low bending loss", U.S. Patent No. 6 711 330, Mar. 23, 2004.
  50. N. Lagakos, et al. "Microbend fiber-optic sensors", Appl. Opt., vol. 26, no. 11, pp. 2171-2180, 1987.
  51. D. Marcuse, "Coupled mode theory of round optical fiber", Bell Syst. Tech. J., vol. 52, no. 6, pp. 817-842, 1973.
  52. D. Marcuse, "Losses and impulse response of a parabolic index fibre with random bends", Bell Syst. Tech. J., vol. 52, no. 8, pp. 1423-1437, 1973.
  53. R. C. Gauthier and C. Ross, "Theoretical and experimental consideration for single-mode fiber optic bend-type sensors", Appl. Opt., vol. 36, no. 25, pp. 6264-6273, 1997.
  54. "Optacore", www.optacore.si

Other (54)

L. Raddatz and I. H. White, "Overcoming the modal bandwidth limitation of multimode fiber by using passband modulation", IEEE Photon. Technol. Lett., vol. 11, no. 2, pp. 266-268, Feb. 1999.

T. K. Woodward, S. Hunsche, A. J. Ritger and J. B. Stark, "1-Gb/s BPSK transmission at 850 nm over 1 km of 62.5- µm -core multimode fiber using a single 2.5-GHz subcarrier", IEEE Photon. Technol. Lett., vol. 11, no. 3, pp. 382-384, Mar. 1999.

E. J. Tyler, P. Kourtessis, M. Webster, E. Rochart, T. Quinlan, S. E. M. Dudley, S. D. Walker, R. V. Penty and I. H. White, "Toward terabit-per-second capacities over multimode fiber links using SCM/WDM techniques", J. Lightw. Technol., vol. 21, no. 12, pp. 3237-3243, Dec. 2003.

E. J. Tyler, M. Webster, R. V. Penty, I. H. White, S. Yu and J. Rorison, "Subcarrier modulated transmission of 2.5 Gb/s over 300 m of 62.5- µm -core diameter multimode fiber", IEEE Photon. Technol. Lett., vol. 14, no. 12, pp. 1743-1745, Dec. 2002.

E. J. Tyler, M. Webster, R. V. Penty and I. H. White, "Penalty free subcarrier modulated multimode fiber links for datacom applications beyond the bandwidth limit", IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 110-112, Jan. 2002.

K. M. Patel and S. E. Ralph, "Enhanced multimode fiber link performance using a spatially resolved receiver", IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 393-395, Mar. 2002.

X. Zhao and F. S. Choa, "Demonstration of 10-Gb/s transmissions over a 1.5-km-long multimode fiber using equalization techniques", IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1187-1189, Aug. 2002.

J. S. Abbott, G. E. Smith and C. M. Truesdale, "Multimode fiber link dispersion compensator", U.S. Patent 6 363 195, Mar. 26, 2002.

P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis and G. Kuyt, "15.6-Gb/s transmission over 1 km of next generation multimode fiber", IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 717-719, May 2002.

Z. Haas and M. A. Santoro, "Mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems", J. Lightw. Technol., vol. 11, no. 7, pp. 1125-1131, Jul. 1993.

J. B. Schlager, M. J. Hackert, P. Pepeljugoski and J. Gwinn, "Measurements for enhanced bandwidth performance over 62.5- µm multimode fiber in short-wavelength local area networks", J. Lightw. Technol., vol. 21, no. 5, pp. 1276-1285, May 2003.

P. Pepeljugoski, M. J. Hackert, J. S. Abbott, S. E. Swanson, S. E. Golowich, A. J. Ritger, P. Kolesar, Y. C. Chen and P. Pleunis, "Development of system specification for laser-optimized 50-um multimode fiber for multigigabit short-wavelength LANs", J. Lightw. Technol., vol. 21, no. 5, pp. 1256-1275, May 2003.

P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar and A. Risteski, "Modeling and simulation of next-generation multimode fiber links", J. Lightw. Technol., vol. 21, no. 5, pp. 1242-1255, May 2003.

M. Webster, L. Raddatz, I. H. White and D. G. Cunningham, "A statistical analysis of conditioned launch for gigabit Ethernet links using multimode fiber", J. Lightw. Technol., vol. 17, no. 9, pp. 1532-1541, Sep. 1999.

C. A. Bunge, J. R. Kropp and K. Petermann, "Study of simplified test procedure for 10-GB-Ethernet fibers", IEEE Photon. Technol. Lett., vol. 14, no. 11, pp. 1539-1541, Nov. 2002.

G. C. Papen and G. M. Murphy, "Modal noise in multimode fibers under restricted launch conditions", J. Lightw. Technol., vol. 17, no. 5, pp. 817-822, May 1999.

"IEEE Standard for Information Technology-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications",

M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto and F. Koyama, "Multiple-wavelength GaInAs-GaAs vertical cavity surface emitting laser array with extended wavelength span", IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 5, pp. 1367-1373, Sep./Oct. 2003.

C. Jung, R. King, R. Jager, M. Grabherr, F. Eberhard, R. Michalzik and K. J. Ebeling, "Highly efficient oxide-confined VCSEL arrays for parallel optical interconnects", J. Opt., A Pure Appl. Opt., vol. 1, no. 2, pp. 272-275, Mar. 1999.

R. Michalzik, R. King, F. Mederer, M. Kicherer, G. Giaretta and K. J. Ebeling, "Short-wavelength vertical-cavity surface-emitting laser applications: From high-throughput multimode fiber links to two-dimensional interchip interconnections", Opt. Eng., vol. 40, no. 7, pp. 1179-1185, 2001.

S. Nakagawa, S. Y. Hu, D. Louderback and L. A. Coldren, "RF crosstalk in multiple-wavelength vertical-cavity surface-emitting laser arrays", IEEE Photon. Technol. Lett., vol. 2, no. 6, pp. 612-614, Jun. 2000.

Y. X. Zhou and J. L. Cheng, "1-Gb/s-per-channel wavelength division multiplexed optical interconnect using wavelength-graded VCSEL and resonant photodetector arrays", IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 740-742, Jun. 2000.

Y. G. Ju, D. Lofgreen, A. Fiore, S. Y. Hu, E. Hegblom, D. Louderback, O. Sjolund, A. Huntington and L. A. Coldren, "Densely packed PIE shaped vertical-cavity surface-emitting laser array incorporating a tapered one-dimensional wet oxidation", IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 462-464, May 2000.

Y. X. Zhou, J. Cheng and A. A. Allerman, "High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strained InGaAs quantum wells", IEEE Photon. Technol. Lett., vol. 12, no. 2, pp. 122-124, Feb. 2000.

S. Y. Yu, J. Ko and E. R. Hegblom, et al. "Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays", IEEE J. Quantum Electron., vol. 34, no. 8, pp. 1403-1414, Aug. 1998.

A. Onomura, M. Arai, T. Kondo, A. Matsutani, T. Miyamoto and F. Koyama, "Densely integrated multiple-wavelength vertical-cavity surface-emitting laser array", Jpn. J. Appl. Phys. 2, Lett., vol. 42, no. 5B, pp. L529-L531, 2003.

K. M. Geib, K. D. Choquette, D. K. Serkland, A. A. Allerman and T. W. Hargett, "Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonant cavity photodetectors", IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 4, pp. 943-947, Jul./Aug. 2002.

K. Katsura, M. Usui, N. Sato, A. Ohki, N. Tanaka, N. Matsuura, T. Kagawa, K. Tateno, M. Hikita, R. Yoshimura and Y. Ando, "Packaging for a 40-channel parallel optical interconnection module with an over-25-Gbit/s throughput", IEEE Trans. Adv. Packag., vol. 22, no. 4, pp. 551-560, Nov. 1999.

H. Kosaka, "Smart integration and packaging of 2-D VCSEL's for high-speed parallel links", IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 2, pp. 184-192, Mar./Apr. 1999.

B. E. Lemoff, M. E. Ali, G. Panotopoulos, E. de Groot, G. M. Flower, G. H. Rankin, A. J. Schmit, K. D. Djordjev, M. R. T. Tan, A. Tandon, W. Gong, R. P. Tella, B. Law, L.-K. Chia and D. W. Dolfi, "Demonstration of a compact low-power 250-Gb/s parallel-WDM optical interconnect", IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 220-222, Jan. 2005.

S.-Y. Hu, J. Ko, E. R. Hegblom and L. A. Coldren, "Multimode WDM optical data links with monolithically integrated multiple-channel VCSEL and photodetector arrays", IEEE J. Quantum Electron., vol. 34, no. 8, pp. 1403-1414, Aug. 1998.

"Optical Interconnects Group at Agilent Laboratories",

K. Okamoto and T. Okoshi, "Analysis of wave propagation in optical fibers having core with alpha -power refractive-index distribution and uniform cladding", IEEE Trans. Microw. Theory Tech., vol. MTT-24, no. 7, pp. 416-421, Mar. 1976.

K. Okamoto and T. Okoshi, "Computer-aided synthesis of the optimum refractive-index profile for a multimode fiber", IEEE Trans. Microw. Theory Tech., vol. MTT-25, no. 3, pp. 213-221, Mar. 1977.

B. Stolz and D. Yevick, "Correcting multimode fiber profiles with differential mode delay", J. Opt. Commun., vol. 4, no. 4, pp. 139-147, 1983.

"OptiFiber, Optical fiber design software", Optiwave Inc., Ottawa, Canada,

K. Oyamada and T. Okoshi, "High-accuracy numerical data on propagation characteristics of a-power graded-core fibers", IEEE Trans. Microw. Theory Tech., vol. MTT-28, no. 10, pp. 1113-1118, Oct. 1980.

T. Ishigure, H. Endo, K. Ohdoko and Y. Koike, "High-bandwidth plastic optical fiber with W-refractive index profile", IEEE Photon. Technol. Lett., vol. 16, no. 9, pp. 2081-2083, Sep. 2004.

T. Li, Ed. Optical Fiber Communications, New York: Academic, 1985,vol. 1, p. 2.

S. R. Nagel, "Fiber materials and fabrication methods," in Optical Fiber Communications II, S. E. Miller Ed. New York: Academic, 1988, pp. 121-215.

M. Kyoto, M. Ito, Y. Ishiguro, H. Kanamori, Y. Ohoga and S. Ishikawa, "Study of fluorine doping during vapour-phase axial deposition sintering process", J. Mater. Sci., vol. 31, no. 9, pp. 2481-2486, 1996.

J. Kirchhof, et al. "About the fluorine chemistry in MCVD: The mechanism of fluorine incorporation", Cryst. Res. Technol., vol. 22, no. 4, pp. 495-501, 1987.

A. Marshall and K. R. Hallam, "Fluorine doping and etching reactions of Freon 12 in optic fiber manufacture", J. Lightw. Technol., vol. LT-4, no. 7, pp. 746-750, Jul. 1986.

C. Cocito, L. Cognolato, E. Modone and G. Parisi, "Fluorine doping in MCVD optical fibers", Torino, Italy, vol. XVI, no. 4, 1988.

J. Kirchhof, et al. "A new MCVD technique for increased efficiency of dopant incorporation in optical fiber fabrication", Cryst. Res. Technol., vol. 25, no. 2, pp. K29-K34, 1990.

D. Donlagic and B. Culshaw, "Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber", J. Lightw. Technol., vol. 17, no. 10, pp. 1856-1868, Oct. 1999.

D. Donlagic and B. Culshaw, "Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems", J. Lightw. Technol., vol. 18, no. 3, pp. 334-342, Mar. 2000.

D. Donlagic and B. Culshaw, "Low-loss transmission through tightly bent standard telecommunication fibers", Appl. Phys. Lett., vol. 77, no. 24, pp. 3911-3913, 2000.

D. Donlagic, "Optical transmission link with low bending loss", U.S. Patent No. 6 711 330, Mar. 23, 2004.

N. Lagakos, et al. "Microbend fiber-optic sensors", Appl. Opt., vol. 26, no. 11, pp. 2171-2180, 1987.

D. Marcuse, "Coupled mode theory of round optical fiber", Bell Syst. Tech. J., vol. 52, no. 6, pp. 817-842, 1973.

D. Marcuse, "Losses and impulse response of a parabolic index fibre with random bends", Bell Syst. Tech. J., vol. 52, no. 8, pp. 1423-1437, 1973.

R. C. Gauthier and C. Ross, "Theoretical and experimental consideration for single-mode fiber optic bend-type sensors", Appl. Opt., vol. 36, no. 25, pp. 6264-6273, 1997.

"Optacore", www.optacore.si

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.