Abstract

The design of a novel 1 × M fold-back type wavelength selective switch (WSS), which has fewer waveguide crossings than a conventional integrated WSS, is reported. The WSS is composed of interleavers, 1 × M optical switches, and arrayed waveguide gratings (AWGs). Switches are combined with AWGs by fold-back waveguides, and each AWG works as both a demultiplexer and multiplexer thus avoiding center wavelength mismatch caused by fabrication errors. Waveguide crossings cause excess crosstalk and loss in lightwave circuits. By using a fold-back architecture the number of crossings can be reduced to less than half that of a conventional design. We discuss the operating principle, the design method, and the scalability of the fold-back type WSS. Furthermore, the switching operation of a 200-GHz spacing, 20-channel, 1 × 2 silicon WSS in a fold-back configuration on a 5 mm × 10 mm SOI chip is demonstrated. This has 15 waveguide crossings in a path, of which six are additional crossings with monitor waveguides. The average insertion loss and average extinction ratio are 29.6 dB and 10.9 dB, respectively.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeri, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.
  2. D. M. Marom, “Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking [invited],” J. Opt. Commun. Netw., vol. 9, no. 1, pp. 1–26, 2017.
  3. D. M. Marom, “Wavelength-Selective 1 × k switches using free-space optics and MEMS micromirrors: Theory, design, and implementation,” J. Lightw. Technol., vol. 23, no. 4, pp. 1620–1630, 2005.
  4. Y. Ishii, “MEMS-based 1 × 43 wavelength-selective switch with flat passband,” presented at the 35th Eur. Conf. Opt. Commun., Vienna, Austria, 2009, pp. 1–2.
  5. M. Iwama, “Low loss 1 × 93 wavelength selective switch using PLC-based spot size converter,” presented at the Eur. Conf. Opt. Commun., Valencia, Spain, 2015, pp. 1–3.
  6. C. R. Doerr, “Monolithic flexible-grid 1 × 2 wavelength-selective switch in silicon photonics,” J. Lightw. Technol., vol. 30, no. 4, pp. 473–478, 2012.
  7. T. Yoshida, “Switching characteristics of a 100-GHz-spacing integrated 40-λ 1 × 4 wavelength selective switch,” IEEE Photon. Technol. Lett., vol. 26, no. 5, pp. 451–453, 2014.
  8. Y. Ikuma, “Low-loss integrated 1 × 2 gridless wavelength selective switch with a small number of waveguide crossings,” presented at the Eur. Conf. Exhib. Opt. Commun., Amsterdam, Netherlands, 2012, pp. 1–3.
  9. F. Nakamura, “Integrated silicon photonic wavelength-selective switch using wavefront control waveguides,” Opt. Express, vol. 26, no. 10, pp. 13573–13589, 2018.
  10. F. Nakamura, “Silicon photonics based 1 × 2 wavelength selective switch using fold-back arrayed-waveguide gratings,” IEICE Electron. Express, vol. 15, no. 14, pp. 20180532–20180532, 2018.
  11. H. Asakura, K. Sugiyama, and H. Tsuda, “Design of a 1 × 2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform,” presented at the 21st Optoelectron. Commun. Conf., Niigata, Japan, 2016, pp. 1–3.
  12. F. Nakamura, “Characteristics of 1 × 2 silicon wavelength selective switch using arrayed-waveguide gratings with fold-back waveguides,” presented at the 18th Int. Conf. Opt. Commun. Netw., Huangshan, China, 2019, pp. 1–2.
  13. D. M. Marom, “Hybrid free-space and planar lightwave circuit wavelength-selective 1 × 3 switch with integrated drop-side demultiplexer,” presented at the 31st Eur. Conf. Opt. Commun. (ECOC 2005), Glasgow, U.K., vol. 4, 2005, pp. 993–994.
  14. K. Sorimoto, “Compact and phase-error-robust multilayered AWG-based wavelength selective switch driven by a single LCOS,” Opt. Express, vol. 21, no. 14, pp. 17131–17149, 2013.
  15. K. Suzuki, “Ultra-High port count wavelength selective switch employing waveguide-based I/O frontend,” presented at the Opt. Fiber Commun. Conf., Los Angeles, USA, 2015, pp. 1–3.
  16. Y. Ma, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express, vol. 21, no. 24, pp. 29374–29382, 2013.
  17. T. Horikawa, “The impacts of fabrication error in si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng., vol. 156, pp. 46–49, 2016.
  18. K. Okamoto, “Arrayed-waveguide grating,” in Fundamentals of Optical Waveguides, 2nd ed., ch. 9, sec. 3. Amsterdam, Netherlands: Elsevier, 2006, pp. 423–428.
  19. P. Munoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol., vol. 20, no. 4, pp. 661–674, 2002.
  20. D. H. Bailey and P. N. Swarztrauber, “A fast method for the numerical evaluation of continuous fourier and laplace transforms,” SIAM J. Sci. Comput., vol. 15, no. 5, pp. 1105–1110, 1994.
  21. K. Suzuki, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” presented at the Opt. Fiber Commun. Conf., San Diego, USA, 2018, pp. 1–3.

2018 (2)

F. Nakamura, “Integrated silicon photonic wavelength-selective switch using wavefront control waveguides,” Opt. Express, vol. 26, no. 10, pp. 13573–13589, 2018.

F. Nakamura, “Silicon photonics based 1 × 2 wavelength selective switch using fold-back arrayed-waveguide gratings,” IEICE Electron. Express, vol. 15, no. 14, pp. 20180532–20180532, 2018.

2017 (1)

2016 (1)

T. Horikawa, “The impacts of fabrication error in si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng., vol. 156, pp. 46–49, 2016.

2014 (1)

T. Yoshida, “Switching characteristics of a 100-GHz-spacing integrated 40-λ 1 × 4 wavelength selective switch,” IEEE Photon. Technol. Lett., vol. 26, no. 5, pp. 451–453, 2014.

2013 (2)

2012 (2)

Y. Ikuma, “Low-loss integrated 1 × 2 gridless wavelength selective switch with a small number of waveguide crossings,” presented at the Eur. Conf. Exhib. Opt. Commun., Amsterdam, Netherlands, 2012, pp. 1–3.

C. R. Doerr, “Monolithic flexible-grid 1 × 2 wavelength-selective switch in silicon photonics,” J. Lightw. Technol., vol. 30, no. 4, pp. 473–478, 2012.

2010 (1)

S. Gringeri, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

2009 (1)

Y. Ishii, “MEMS-based 1 × 43 wavelength-selective switch with flat passband,” presented at the 35th Eur. Conf. Opt. Commun., Vienna, Austria, 2009, pp. 1–2.

2005 (1)

D. M. Marom, “Wavelength-Selective 1 × k switches using free-space optics and MEMS micromirrors: Theory, design, and implementation,” J. Lightw. Technol., vol. 23, no. 4, pp. 1620–1630, 2005.

2002 (1)

P. Munoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol., vol. 20, no. 4, pp. 661–674, 2002.

1994 (1)

D. H. Bailey and P. N. Swarztrauber, “A fast method for the numerical evaluation of continuous fourier and laplace transforms,” SIAM J. Sci. Comput., vol. 15, no. 5, pp. 1105–1110, 1994.

Asakura, H.

H. Asakura, K. Sugiyama, and H. Tsuda, “Design of a 1 × 2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform,” presented at the 21st Optoelectron. Commun. Conf., Niigata, Japan, 2016, pp. 1–3.

Bailey, D. H.

D. H. Bailey and P. N. Swarztrauber, “A fast method for the numerical evaluation of continuous fourier and laplace transforms,” SIAM J. Sci. Comput., vol. 15, no. 5, pp. 1105–1110, 1994.

Capmany, J.

P. Munoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol., vol. 20, no. 4, pp. 661–674, 2002.

Doerr, C. R.

C. R. Doerr, “Monolithic flexible-grid 1 × 2 wavelength-selective switch in silicon photonics,” J. Lightw. Technol., vol. 30, no. 4, pp. 473–478, 2012.

Gringeri, S.

S. Gringeri, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

Horikawa, T.

T. Horikawa, “The impacts of fabrication error in si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng., vol. 156, pp. 46–49, 2016.

Ikuma, Y.

Y. Ikuma, “Low-loss integrated 1 × 2 gridless wavelength selective switch with a small number of waveguide crossings,” presented at the Eur. Conf. Exhib. Opt. Commun., Amsterdam, Netherlands, 2012, pp. 1–3.

Ishii, Y.

Y. Ishii, “MEMS-based 1 × 43 wavelength-selective switch with flat passband,” presented at the 35th Eur. Conf. Opt. Commun., Vienna, Austria, 2009, pp. 1–2.

Iwama, M.

M. Iwama, “Low loss 1 × 93 wavelength selective switch using PLC-based spot size converter,” presented at the Eur. Conf. Opt. Commun., Valencia, Spain, 2015, pp. 1–3.

Ma, Y.

Marom, D. M.

D. M. Marom, “Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking [invited],” J. Opt. Commun. Netw., vol. 9, no. 1, pp. 1–26, 2017.

D. M. Marom, “Wavelength-Selective 1 × k switches using free-space optics and MEMS micromirrors: Theory, design, and implementation,” J. Lightw. Technol., vol. 23, no. 4, pp. 1620–1630, 2005.

D. M. Marom, “Hybrid free-space and planar lightwave circuit wavelength-selective 1 × 3 switch with integrated drop-side demultiplexer,” presented at the 31st Eur. Conf. Opt. Commun. (ECOC 2005), Glasgow, U.K., vol. 4, 2005, pp. 993–994.

Munoz, P.

P. Munoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol., vol. 20, no. 4, pp. 661–674, 2002.

Nakamura, F.

F. Nakamura, “Integrated silicon photonic wavelength-selective switch using wavefront control waveguides,” Opt. Express, vol. 26, no. 10, pp. 13573–13589, 2018.

F. Nakamura, “Silicon photonics based 1 × 2 wavelength selective switch using fold-back arrayed-waveguide gratings,” IEICE Electron. Express, vol. 15, no. 14, pp. 20180532–20180532, 2018.

F. Nakamura, “Characteristics of 1 × 2 silicon wavelength selective switch using arrayed-waveguide gratings with fold-back waveguides,” presented at the 18th Int. Conf. Opt. Commun. Netw., Huangshan, China, 2019, pp. 1–2.

Okamoto, K.

K. Okamoto, “Arrayed-waveguide grating,” in Fundamentals of Optical Waveguides, 2nd ed., ch. 9, sec. 3. Amsterdam, Netherlands: Elsevier, 2006, pp. 423–428.

Pastor, D.

P. Munoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol., vol. 20, no. 4, pp. 661–674, 2002.

Sorimoto, K.

Sugiyama, K.

H. Asakura, K. Sugiyama, and H. Tsuda, “Design of a 1 × 2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform,” presented at the 21st Optoelectron. Commun. Conf., Niigata, Japan, 2016, pp. 1–3.

Suzuki, K.

K. Suzuki, “Ultra-High port count wavelength selective switch employing waveguide-based I/O frontend,” presented at the Opt. Fiber Commun. Conf., Los Angeles, USA, 2015, pp. 1–3.

K. Suzuki, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” presented at the Opt. Fiber Commun. Conf., San Diego, USA, 2018, pp. 1–3.

Swarztrauber, P. N.

D. H. Bailey and P. N. Swarztrauber, “A fast method for the numerical evaluation of continuous fourier and laplace transforms,” SIAM J. Sci. Comput., vol. 15, no. 5, pp. 1105–1110, 1994.

Tsuda, H.

H. Asakura, K. Sugiyama, and H. Tsuda, “Design of a 1 × 2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform,” presented at the 21st Optoelectron. Commun. Conf., Niigata, Japan, 2016, pp. 1–3.

Yoshida, T.

T. Yoshida, “Switching characteristics of a 100-GHz-spacing integrated 40-λ 1 × 4 wavelength selective switch,” IEEE Photon. Technol. Lett., vol. 26, no. 5, pp. 451–453, 2014.

IEEE Commun. Mag. (1)

S. Gringeri, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

IEEE Photon. Technol. Lett. (1)

T. Yoshida, “Switching characteristics of a 100-GHz-spacing integrated 40-λ 1 × 4 wavelength selective switch,” IEEE Photon. Technol. Lett., vol. 26, no. 5, pp. 451–453, 2014.

IEICE Electron. Express (1)

F. Nakamura, “Silicon photonics based 1 × 2 wavelength selective switch using fold-back arrayed-waveguide gratings,” IEICE Electron. Express, vol. 15, no. 14, pp. 20180532–20180532, 2018.

J. Lightw. Technol. (3)

C. R. Doerr, “Monolithic flexible-grid 1 × 2 wavelength-selective switch in silicon photonics,” J. Lightw. Technol., vol. 30, no. 4, pp. 473–478, 2012.

D. M. Marom, “Wavelength-Selective 1 × k switches using free-space optics and MEMS micromirrors: Theory, design, and implementation,” J. Lightw. Technol., vol. 23, no. 4, pp. 1620–1630, 2005.

P. Munoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol., vol. 20, no. 4, pp. 661–674, 2002.

J. Opt. Commun. Netw. (1)

Microelectron. Eng. (1)

T. Horikawa, “The impacts of fabrication error in si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng., vol. 156, pp. 46–49, 2016.

Opt. Express (3)

SIAM J. Sci. Comput. (1)

D. H. Bailey and P. N. Swarztrauber, “A fast method for the numerical evaluation of continuous fourier and laplace transforms,” SIAM J. Sci. Comput., vol. 15, no. 5, pp. 1105–1110, 1994.

Other (9)

K. Suzuki, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” presented at the Opt. Fiber Commun. Conf., San Diego, USA, 2018, pp. 1–3.

Y. Ikuma, “Low-loss integrated 1 × 2 gridless wavelength selective switch with a small number of waveguide crossings,” presented at the Eur. Conf. Exhib. Opt. Commun., Amsterdam, Netherlands, 2012, pp. 1–3.

Y. Ishii, “MEMS-based 1 × 43 wavelength-selective switch with flat passband,” presented at the 35th Eur. Conf. Opt. Commun., Vienna, Austria, 2009, pp. 1–2.

M. Iwama, “Low loss 1 × 93 wavelength selective switch using PLC-based spot size converter,” presented at the Eur. Conf. Opt. Commun., Valencia, Spain, 2015, pp. 1–3.

K. Suzuki, “Ultra-High port count wavelength selective switch employing waveguide-based I/O frontend,” presented at the Opt. Fiber Commun. Conf., Los Angeles, USA, 2015, pp. 1–3.

K. Okamoto, “Arrayed-waveguide grating,” in Fundamentals of Optical Waveguides, 2nd ed., ch. 9, sec. 3. Amsterdam, Netherlands: Elsevier, 2006, pp. 423–428.

H. Asakura, K. Sugiyama, and H. Tsuda, “Design of a 1 × 2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform,” presented at the 21st Optoelectron. Commun. Conf., Niigata, Japan, 2016, pp. 1–3.

F. Nakamura, “Characteristics of 1 × 2 silicon wavelength selective switch using arrayed-waveguide gratings with fold-back waveguides,” presented at the 18th Int. Conf. Opt. Commun. Netw., Huangshan, China, 2019, pp. 1–2.

D. M. Marom, “Hybrid free-space and planar lightwave circuit wavelength-selective 1 × 3 switch with integrated drop-side demultiplexer,” presented at the 31st Eur. Conf. Opt. Commun. (ECOC 2005), Glasgow, U.K., vol. 4, 2005, pp. 993–994.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.