Abstract

A flexible bidirectional fiber-free-space optical (FSO)-fifth-generation (5G) wireless convergent system with 1-Gb/s/4.5-GHz sub-6 GHz and 10-Gb/s/28-GHz millimeter-wave (MMW) (downstream), as well as 10-Gb/s/24-GHz MMW (upstream) 5G hybrid data signals is built, employing a vertical cavity surface emitting laser (VCSEL)-based wavelength selector and a remotely injection-locked distributed feedback laser diode (DFB LD) for presentation. It is the first to adopt a VCSEL-based wavelength selector to adaptively provide 5G applications and an injection-locked DFB LD to perform a phase modulation-to-intensity modulation transformation with an optical-to-electrical conversion. Good bit error rate performance and acceptable eye diagrams are achieved over 25 km single-mode fiber transport, 600 m FSO link, and 10 m/4 m RF wireless transmission. Such demonstrated fiber-FSO-5G wireless convergent system is a promising one toward optical-based long-haul networks at comparatively high-speed operations. It exhibits an excellent convergence not only due to its development for incorporating optical fiber with optical/5G wireless networks, but also due to its enhancement for flexible two-way high-speed and long-haul communications.

PDF Article

References

  • View by:

  1. E. Garro, “5G mixed mode: NR multicast-broadcast services,” IEEE Trans. Broadcast., vol. 66, no. 2, pp. 390–403, 2020.
  2. S. Henry, A. Alsohaily, and E. S. Sousa, “5G is real: Evaluating the compliance of the 3GPP 5G new radio system with the ITU IMT-2020 requirements,” IEEE Access, vol. 8, pp. 42828–42840, 2020.
  3. I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the 6G network era: Opportunities and challenges,” IEEE IT Prof., vol. 22, no. 1, pp. 34–38, 2020.
  4. Y. Yang, “Multi-tier computing networks for intelligent IoT,” Nat. Electron., vol. 2, pp. 4–5, 2019.
  5. L. Huang, “Microwave photonic RF front-end for co-frequency co-time full duplex 5G communication with integrated RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion,” Opt. Express, vol. 27, no. 22, pp. 32147–32157, 2019.
  6. T. Kusunoki, T. Kurakake, K. Otsuki, and K. Saito, “Improvement of 4K/8K multi-channel IP multicast using DOCSIS over in-building coaxial cable network,” in Proc. IEEE Intl. Conf. Consum. Electron. (ICCE), 2019, pp. 1–5.
  7. D. Fujimoto, H. H. Lu, K. Kumamoto, S. E. Tsai, Q. P. Huang, and J. Y. Xie, “Phase-modulated hybrid high-speed Internet/WiFi/Pre-5G in-building networks over SMF and PCF with GI-POF/IVLLC transport,” IEEE Access, vol. 7, pp. 90620–90629, 2019.
  8. N. Eiselt, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G Ethernet-based fronthaul architecture,” IEEE/OSA J. Lightw. Technol., vol. 36, no. 10, pp. 1807–1814, 2018.
  9. C. Y. Li, X. H. Huang, H. H. Lu, Y. C. Huang, Q. P. Huang, and S. C. Tu, “A WDM PAM4 FSO–UWOC integrated system with a channel capacity of 100 Gb/s,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 7, pp. 1766–1776, 2020.
  10. H. W. Wu, “A 448-Gb/s PAM4 FSO communication with polarization-multiplexing injection-locked VCSELs through 600 m free-space link,” IEEE Access, vol. 8, pp. 28859–28866, 2020.
  11. W. G. Alheadary, “Free-space optical channel characterization and experimental validation in a coastal environment,” Opt. Express, vol. 26, no. 6, pp. 6614–6628, 2018.
  12. W. C. Wang, H. Y. Wang, and G. R. Lin, “Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s,” Sci. Rep., vol. 8, 2018, Art. no. .
  13. Y. W. Chen, “Asynchronous multi-service fiber-wireless integrated network using UFMC and PS for flexible 5G applications,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2020, pp. 1–3.
  14. Y. Zhao, W. Shi, H. Shi, W. Liu, Z. Wang, and J. Zhang, “Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks,” IEEE Access, vol. 8, pp. 9358–9370, 2020.
  15. M. V. Jamali and H. Mahdavifar, “Uplink non-orthogonal multiple access over mixed RF-FSO systems,” IEEE Trans. Wirel. Commun., vol. 19, no. 5, pp. 3558–3574, 2020.
  16. C. H. Yeh, W. P. Lin, C. M. Luo, Y. R. Xie, Y. J. Chang, and C. W. Chow, “Utilizing single lightwave for delivering baseband/FSO/MMW traffics simultaneously in PON architecture,” IEEE Access, vol. 7, pp. 138927–138931, 2019.
  17. C. H. Chang, L. S. Tu, Y. S. Huang, and C. Y. Li, “Upgradable radio-over-fiber transport system,” Opt. Eng., vol. 56, no. 10, 2017. Art. no. .
  18. C. Y. Lin, “A full-duplex lightwave transmission system with an innovative VCSEL-based PM-to-IM converter,” Opt. Express, vol. 22, no. 8, pp. 9993–10001, 2014.
  19. T. Mochii, “A flexibly bidirectional wireless-over-fiber transport system,” IEEE Photon. J, vol. 7, no. 6, 2015, Art. no. .
  20. S. Mechels, L. Muller, G. D. Morley, and D. Tillett, “1D MEMS-based wavelength switching subsystem,” IEEE Commun. Mag., vol. 29, no. 24, pp. 88–94, 2003.
  21. Y. Gao, Z. Tan, X. Chen, and G. Chen, “A hybrid algorithm for multi-beam steering of LCOS-based wavelength selective switch,” IEEE Photon. J., vol. 12, no. 3, 2020, Art. no. .
  22. C. Y. Chen, “Bidirectional phased-modulated hybrid cable television/radio-over-fiber lightwave transport systems,” Opt. Lett., vol. 38, no. 4, pp. 404–406, 2013.
  23. W. Li, N. H. Zhu, L. X. Wang, and H. Wang, “Broadband phase-to-intensity modulation conversion for microwave photonics processing using Brillouin-assisted carrier phase shift,” IEEE/OSA J. Lightw. Technol., vol. 29, no. 24, pp. 3616–3621, 2011.
  24. C. Y. Li, H. W. Wu, H. H. Lu, W. S. Tsai, S. E. Tsai, and J. Y. Xie, “A hybrid internet/CATV/5G fiber-FSO integrated system with a triple-wavelength polarization multiplexing scenario,” IEEE Access, vol. 7, pp. 151023–151033, 2020.
  25. H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 1005–1007, 2007.
  26. H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1942–1944, 2004.
  27. H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 57–96, 2017.
  28. J. Zhang, “Fiber–wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique,” Opt. Lett., vol. 41, no. 9, pp. 1909–1912, 2016.
  29. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd Ed., Bellingham, WA, USA: SPIE Press, 2005.
  30. I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” in Proc. SPIE, vol. 4214, pp. 26–37, 2001.
  31. Y. H. Lin, “100-Gbit/s/λ EML transmitter and PIN-PD+TIA receiver-based inter-data center link,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 8, pp. 2144–2151, 2020.
  32. S. A. K. Tanoli, “Impact of relay location of STANC bi-directional transmission for future autonomous internet of things applications,” IEEE Access, vol. 8, pp. 29395–29406, 2020.
  33. A. Upadhya, V. K. Dwivedi, and G. K. Karagiannidis, “On the effect of interference and misalignment error in mixed RF/FSO systems over generalized fading channels,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3681–3695, 2020.
  34. 2020. [Online]. Available: http://www.voscom.com/trainning/fiber-optic-dispersion.asp
  35. A. D. Ellis, M. E. Mccarthy, M. A. Z. AL Khateeb, M. Sorokian, and N. J. Doran, “Performance limits in optical communications due to fiber nonlinearity,” Adv. Opt. Photon., vol. 9, no. 3, pp. 429–503, 2017.
  36. P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron., vol. 33, no. 9, pp. 1582–1591, 1997.
  37. Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 463–465, 2008.
  38. E. I. Ackerman, C. Cox, III, G. Betts, H. Roussell, K. Ray, and F. O'Donnell, “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2025–2031, 1998.

2020 (12)

E. Garro, “5G mixed mode: NR multicast-broadcast services,” IEEE Trans. Broadcast., vol. 66, no. 2, pp. 390–403, 2020.

S. Henry, A. Alsohaily, and E. S. Sousa, “5G is real: Evaluating the compliance of the 3GPP 5G new radio system with the ITU IMT-2020 requirements,” IEEE Access, vol. 8, pp. 42828–42840, 2020.

I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the 6G network era: Opportunities and challenges,” IEEE IT Prof., vol. 22, no. 1, pp. 34–38, 2020.

C. Y. Li, X. H. Huang, H. H. Lu, Y. C. Huang, Q. P. Huang, and S. C. Tu, “A WDM PAM4 FSO–UWOC integrated system with a channel capacity of 100 Gb/s,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 7, pp. 1766–1776, 2020.

H. W. Wu, “A 448-Gb/s PAM4 FSO communication with polarization-multiplexing injection-locked VCSELs through 600 m free-space link,” IEEE Access, vol. 8, pp. 28859–28866, 2020.

Y. Zhao, W. Shi, H. Shi, W. Liu, Z. Wang, and J. Zhang, “Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks,” IEEE Access, vol. 8, pp. 9358–9370, 2020.

M. V. Jamali and H. Mahdavifar, “Uplink non-orthogonal multiple access over mixed RF-FSO systems,” IEEE Trans. Wirel. Commun., vol. 19, no. 5, pp. 3558–3574, 2020.

Y. Gao, Z. Tan, X. Chen, and G. Chen, “A hybrid algorithm for multi-beam steering of LCOS-based wavelength selective switch,” IEEE Photon. J., vol. 12, no. 3, 2020, Art. no. .

C. Y. Li, H. W. Wu, H. H. Lu, W. S. Tsai, S. E. Tsai, and J. Y. Xie, “A hybrid internet/CATV/5G fiber-FSO integrated system with a triple-wavelength polarization multiplexing scenario,” IEEE Access, vol. 7, pp. 151023–151033, 2020.

Y. H. Lin, “100-Gbit/s/λ EML transmitter and PIN-PD+TIA receiver-based inter-data center link,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 8, pp. 2144–2151, 2020.

S. A. K. Tanoli, “Impact of relay location of STANC bi-directional transmission for future autonomous internet of things applications,” IEEE Access, vol. 8, pp. 29395–29406, 2020.

A. Upadhya, V. K. Dwivedi, and G. K. Karagiannidis, “On the effect of interference and misalignment error in mixed RF/FSO systems over generalized fading channels,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3681–3695, 2020.

2019 (4)

C. H. Yeh, W. P. Lin, C. M. Luo, Y. R. Xie, Y. J. Chang, and C. W. Chow, “Utilizing single lightwave for delivering baseband/FSO/MMW traffics simultaneously in PON architecture,” IEEE Access, vol. 7, pp. 138927–138931, 2019.

Y. Yang, “Multi-tier computing networks for intelligent IoT,” Nat. Electron., vol. 2, pp. 4–5, 2019.

L. Huang, “Microwave photonic RF front-end for co-frequency co-time full duplex 5G communication with integrated RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion,” Opt. Express, vol. 27, no. 22, pp. 32147–32157, 2019.

D. Fujimoto, H. H. Lu, K. Kumamoto, S. E. Tsai, Q. P. Huang, and J. Y. Xie, “Phase-modulated hybrid high-speed Internet/WiFi/Pre-5G in-building networks over SMF and PCF with GI-POF/IVLLC transport,” IEEE Access, vol. 7, pp. 90620–90629, 2019.

2018 (3)

N. Eiselt, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G Ethernet-based fronthaul architecture,” IEEE/OSA J. Lightw. Technol., vol. 36, no. 10, pp. 1807–1814, 2018.

W. G. Alheadary, “Free-space optical channel characterization and experimental validation in a coastal environment,” Opt. Express, vol. 26, no. 6, pp. 6614–6628, 2018.

W. C. Wang, H. Y. Wang, and G. R. Lin, “Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s,” Sci. Rep., vol. 8, 2018, Art. no. .

2017 (3)

C. H. Chang, L. S. Tu, Y. S. Huang, and C. Y. Li, “Upgradable radio-over-fiber transport system,” Opt. Eng., vol. 56, no. 10, 2017. Art. no. .

A. D. Ellis, M. E. Mccarthy, M. A. Z. AL Khateeb, M. Sorokian, and N. J. Doran, “Performance limits in optical communications due to fiber nonlinearity,” Adv. Opt. Photon., vol. 9, no. 3, pp. 429–503, 2017.

H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 57–96, 2017.

2016 (1)

2015 (1)

T. Mochii, “A flexibly bidirectional wireless-over-fiber transport system,” IEEE Photon. J, vol. 7, no. 6, 2015, Art. no. .

2014 (1)

2013 (1)

2011 (1)

W. Li, N. H. Zhu, L. X. Wang, and H. Wang, “Broadband phase-to-intensity modulation conversion for microwave photonics processing using Brillouin-assisted carrier phase shift,” IEEE/OSA J. Lightw. Technol., vol. 29, no. 24, pp. 3616–3621, 2011.

2008 (1)

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 463–465, 2008.

2007 (1)

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 1005–1007, 2007.

2004 (1)

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1942–1944, 2004.

2003 (1)

S. Mechels, L. Muller, G. D. Morley, and D. Tillett, “1D MEMS-based wavelength switching subsystem,” IEEE Commun. Mag., vol. 29, no. 24, pp. 88–94, 2003.

1998 (1)

E. I. Ackerman, C. Cox, III, G. Betts, H. Roussell, K. Ray, and F. O'Donnell, “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2025–2031, 1998.

1997 (1)

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron., vol. 33, no. 9, pp. 1582–1591, 1997.

Ackerman, E. I.

E. I. Ackerman, C. Cox, III, G. Betts, H. Roussell, K. Ray, and F. O'Donnell, “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2025–2031, 1998.

AL Khateeb, M. A. Z.

Alheadary, W. G.

Alsohaily, A.

S. Henry, A. Alsohaily, and E. S. Sousa, “5G is real: Evaluating the compliance of the 3GPP 5G new radio system with the ITU IMT-2020 requirements,” IEEE Access, vol. 8, pp. 42828–42840, 2020.

Amann, M. C.

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 463–465, 2008.

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd Ed., Bellingham, WA, USA: SPIE Press, 2005.

Betts, G.

E. I. Ackerman, C. Cox, III, G. Betts, H. Roussell, K. Ray, and F. O'Donnell, “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2025–2031, 1998.

Chang, C. H.

C. H. Chang, L. S. Tu, Y. S. Huang, and C. Y. Li, “Upgradable radio-over-fiber transport system,” Opt. Eng., vol. 56, no. 10, 2017. Art. no. .

Chang, Y. J.

C. H. Yeh, W. P. Lin, C. M. Luo, Y. R. Xie, Y. J. Chang, and C. W. Chow, “Utilizing single lightwave for delivering baseband/FSO/MMW traffics simultaneously in PON architecture,” IEEE Access, vol. 7, pp. 138927–138931, 2019.

Chen, C. Y.

Chen, G.

Y. Gao, Z. Tan, X. Chen, and G. Chen, “A hybrid algorithm for multi-beam steering of LCOS-based wavelength selective switch,” IEEE Photon. J., vol. 12, no. 3, 2020, Art. no. .

Chen, X.

Y. Gao, Z. Tan, X. Chen, and G. Chen, “A hybrid algorithm for multi-beam steering of LCOS-based wavelength selective switch,” IEEE Photon. J., vol. 12, no. 3, 2020, Art. no. .

Chen, Y. W.

Y. W. Chen, “Asynchronous multi-service fiber-wireless integrated network using UFMC and PS for flexible 5G applications,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2020, pp. 1–3.

Choi, W. Y.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1942–1944, 2004.

Chow, C. W.

C. H. Yeh, W. P. Lin, C. M. Luo, Y. R. Xie, Y. J. Chang, and C. W. Chow, “Utilizing single lightwave for delivering baseband/FSO/MMW traffics simultaneously in PON architecture,” IEEE Access, vol. 7, pp. 138927–138931, 2019.

Chrostowski, L.

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 463–465, 2008.

Cox, III, C.

E. I. Ackerman, C. Cox, III, G. Betts, H. Roussell, K. Ray, and F. O'Donnell, “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2025–2031, 1998.

Doran, N. J.

Dwivedi, V. K.

A. Upadhya, V. K. Dwivedi, and G. K. Karagiannidis, “On the effect of interference and misalignment error in mixed RF/FSO systems over generalized fading channels,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3681–3695, 2020.

Eiselt, N.

N. Eiselt, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G Ethernet-based fronthaul architecture,” IEEE/OSA J. Lightw. Technol., vol. 36, no. 10, pp. 1807–1814, 2018.

Ellis, A. D.

Foing, J. P.

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron., vol. 33, no. 9, pp. 1582–1591, 1997.

Fujimoto, D.

D. Fujimoto, H. H. Lu, K. Kumamoto, S. E. Tsai, Q. P. Huang, and J. Y. Xie, “Phase-modulated hybrid high-speed Internet/WiFi/Pre-5G in-building networks over SMF and PCF with GI-POF/IVLLC transport,” IEEE Access, vol. 7, pp. 90620–90629, 2019.

Gao, Y.

Y. Gao, Z. Tan, X. Chen, and G. Chen, “A hybrid algorithm for multi-beam steering of LCOS-based wavelength selective switch,” IEEE Photon. J., vol. 12, no. 3, 2020, Art. no. .

Garro, E.

E. Garro, “5G mixed mode: NR multicast-broadcast services,” IEEE Trans. Broadcast., vol. 66, no. 2, pp. 390–403, 2020.

Gu, Q.

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 463–465, 2008.

Henry, S.

S. Henry, A. Alsohaily, and E. S. Sousa, “5G is real: Evaluating the compliance of the 3GPP 5G new radio system with the ITU IMT-2020 requirements,” IEEE Access, vol. 8, pp. 42828–42840, 2020.

Hofmann, W.

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 463–465, 2008.

Huang, L.

Huang, Q. P.

C. Y. Li, X. H. Huang, H. H. Lu, Y. C. Huang, Q. P. Huang, and S. C. Tu, “A WDM PAM4 FSO–UWOC integrated system with a channel capacity of 100 Gb/s,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 7, pp. 1766–1776, 2020.

D. Fujimoto, H. H. Lu, K. Kumamoto, S. E. Tsai, Q. P. Huang, and J. Y. Xie, “Phase-modulated hybrid high-speed Internet/WiFi/Pre-5G in-building networks over SMF and PCF with GI-POF/IVLLC transport,” IEEE Access, vol. 7, pp. 90620–90629, 2019.

Huang, X. H.

C. Y. Li, X. H. Huang, H. H. Lu, Y. C. Huang, Q. P. Huang, and S. C. Tu, “A WDM PAM4 FSO–UWOC integrated system with a channel capacity of 100 Gb/s,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 7, pp. 1766–1776, 2020.

Huang, Y. C.

C. Y. Li, X. H. Huang, H. H. Lu, Y. C. Huang, Q. P. Huang, and S. C. Tu, “A WDM PAM4 FSO–UWOC integrated system with a channel capacity of 100 Gb/s,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 7, pp. 1766–1776, 2020.

Huang, Y. S.

C. H. Chang, L. S. Tu, Y. S. Huang, and C. Y. Li, “Upgradable radio-over-fiber transport system,” Opt. Eng., vol. 56, no. 10, 2017. Art. no. .

Jamali, M. V.

M. V. Jamali and H. Mahdavifar, “Uplink non-orthogonal multiple access over mixed RF-FSO systems,” IEEE Trans. Wirel. Commun., vol. 19, no. 5, pp. 3558–3574, 2020.

Kaddoum, G.

H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 57–96, 2017.

Karagiannidis, G. K.

A. Upadhya, V. K. Dwivedi, and G. K. Karagiannidis, “On the effect of interference and misalignment error in mixed RF/FSO systems over generalized fading channels,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3681–3695, 2020.

Kaushal, H.

H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 57–96, 2017.

Kim, I. I.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” in Proc. SPIE, vol. 4214, pp. 26–37, 2001.

Klonidis, D.

I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the 6G network era: Opportunities and challenges,” IEEE IT Prof., vol. 22, no. 1, pp. 34–38, 2020.

Korevaar, E.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” in Proc. SPIE, vol. 4214, pp. 26–37, 2001.

Kumamoto, K.

D. Fujimoto, H. H. Lu, K. Kumamoto, S. E. Tsai, Q. P. Huang, and J. Y. Xie, “Phase-modulated hybrid high-speed Internet/WiFi/Pre-5G in-building networks over SMF and PCF with GI-POF/IVLLC transport,” IEEE Access, vol. 7, pp. 90620–90629, 2019.

Kurakake, T.

T. Kusunoki, T. Kurakake, K. Otsuki, and K. Saito, “Improvement of 4K/8K multi-channel IP multicast using DOCSIS over in-building coaxial cable network,” in Proc. IEEE Intl. Conf. Consum. Electron. (ICCE), 2019, pp. 1–5.

Kusunoki, T.

T. Kusunoki, T. Kurakake, K. Otsuki, and K. Saito, “Improvement of 4K/8K multi-channel IP multicast using DOCSIS over in-building coaxial cable network,” in Proc. IEEE Intl. Conf. Consum. Electron. (ICCE), 2019, pp. 1–5.

Lau, E. K.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 1005–1007, 2007.

Li, C. Y.

C. Y. Li, X. H. Huang, H. H. Lu, Y. C. Huang, Q. P. Huang, and S. C. Tu, “A WDM PAM4 FSO–UWOC integrated system with a channel capacity of 100 Gb/s,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 7, pp. 1766–1776, 2020.

C. Y. Li, H. W. Wu, H. H. Lu, W. S. Tsai, S. E. Tsai, and J. Y. Xie, “A hybrid internet/CATV/5G fiber-FSO integrated system with a triple-wavelength polarization multiplexing scenario,” IEEE Access, vol. 7, pp. 151023–151033, 2020.

C. H. Chang, L. S. Tu, Y. S. Huang, and C. Y. Li, “Upgradable radio-over-fiber transport system,” Opt. Eng., vol. 56, no. 10, 2017. Art. no. .

Li, W.

W. Li, N. H. Zhu, L. X. Wang, and H. Wang, “Broadband phase-to-intensity modulation conversion for microwave photonics processing using Brillouin-assisted carrier phase shift,” IEEE/OSA J. Lightw. Technol., vol. 29, no. 24, pp. 3616–3621, 2011.

Lin, C. Y.

Lin, G. R.

W. C. Wang, H. Y. Wang, and G. R. Lin, “Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s,” Sci. Rep., vol. 8, 2018, Art. no. .

Lin, W. P.

C. H. Yeh, W. P. Lin, C. M. Luo, Y. R. Xie, Y. J. Chang, and C. W. Chow, “Utilizing single lightwave for delivering baseband/FSO/MMW traffics simultaneously in PON architecture,” IEEE Access, vol. 7, pp. 138927–138931, 2019.

Lin, Y. H.

Y. H. Lin, “100-Gbit/s/λ EML transmitter and PIN-PD+TIA receiver-based inter-data center link,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 8, pp. 2144–2151, 2020.

Liu, W.

Y. Zhao, W. Shi, H. Shi, W. Liu, Z. Wang, and J. Zhang, “Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks,” IEEE Access, vol. 8, pp. 9358–9370, 2020.

Lu, H. H.

C. Y. Li, H. W. Wu, H. H. Lu, W. S. Tsai, S. E. Tsai, and J. Y. Xie, “A hybrid internet/CATV/5G fiber-FSO integrated system with a triple-wavelength polarization multiplexing scenario,” IEEE Access, vol. 7, pp. 151023–151033, 2020.

C. Y. Li, X. H. Huang, H. H. Lu, Y. C. Huang, Q. P. Huang, and S. C. Tu, “A WDM PAM4 FSO–UWOC integrated system with a channel capacity of 100 Gb/s,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 7, pp. 1766–1776, 2020.

D. Fujimoto, H. H. Lu, K. Kumamoto, S. E. Tsai, Q. P. Huang, and J. Y. Xie, “Phase-modulated hybrid high-speed Internet/WiFi/Pre-5G in-building networks over SMF and PCF with GI-POF/IVLLC transport,” IEEE Access, vol. 7, pp. 90620–90629, 2019.

Luo, C. M.

C. H. Yeh, W. P. Lin, C. M. Luo, Y. R. Xie, Y. J. Chang, and C. W. Chow, “Utilizing single lightwave for delivering baseband/FSO/MMW traffics simultaneously in PON architecture,” IEEE Access, vol. 7, pp. 138927–138931, 2019.

Mahdavifar, H.

M. V. Jamali and H. Mahdavifar, “Uplink non-orthogonal multiple access over mixed RF-FSO systems,” IEEE Trans. Wirel. Commun., vol. 19, no. 5, pp. 3558–3574, 2020.

McArthur, B.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” in Proc. SPIE, vol. 4214, pp. 26–37, 2001.

Mccarthy, M. E.

Mechels, S.

S. Mechels, L. Muller, G. D. Morley, and D. Tillett, “1D MEMS-based wavelength switching subsystem,” IEEE Commun. Mag., vol. 29, no. 24, pp. 88–94, 2003.

Mochii, T.

T. Mochii, “A flexibly bidirectional wireless-over-fiber transport system,” IEEE Photon. J, vol. 7, no. 6, 2015, Art. no. .

Morley, G. D.

S. Mechels, L. Muller, G. D. Morley, and D. Tillett, “1D MEMS-based wavelength switching subsystem,” IEEE Commun. Mag., vol. 29, no. 24, pp. 88–94, 2003.

Muller, L.

S. Mechels, L. Muller, G. D. Morley, and D. Tillett, “1D MEMS-based wavelength switching subsystem,” IEEE Commun. Mag., vol. 29, no. 24, pp. 88–94, 2003.

O'Donnell, F.

E. I. Ackerman, C. Cox, III, G. Betts, H. Roussell, K. Ray, and F. O'Donnell, “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2025–2031, 1998.

Otsuki, K.

T. Kusunoki, T. Kurakake, K. Otsuki, and K. Saito, “Improvement of 4K/8K multi-channel IP multicast using DOCSIS over in-building coaxial cable network,” in Proc. IEEE Intl. Conf. Consum. Electron. (ICCE), 2019, pp. 1–5.

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd Ed., Bellingham, WA, USA: SPIE Press, 2005.

Pikasis, E.

I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the 6G network era: Opportunities and challenges,” IEEE IT Prof., vol. 22, no. 1, pp. 34–38, 2020.

Ray, K.

E. I. Ackerman, C. Cox, III, G. Betts, H. Roussell, K. Ray, and F. O'Donnell, “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2025–2031, 1998.

Roussell, H.

E. I. Ackerman, C. Cox, III, G. Betts, H. Roussell, K. Ray, and F. O'Donnell, “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2025–2031, 1998.

Ryu, H. S.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1942–1944, 2004.

Saboureau, P.

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron., vol. 33, no. 9, pp. 1582–1591, 1997.

Saito, K.

T. Kusunoki, T. Kurakake, K. Otsuki, and K. Saito, “Improvement of 4K/8K multi-channel IP multicast using DOCSIS over in-building coaxial cable network,” in Proc. IEEE Intl. Conf. Consum. Electron. (ICCE), 2019, pp. 1–5.

Schanne, P.

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron., vol. 33, no. 9, pp. 1582–1591, 1997.

Seo, Y. K.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1942–1944, 2004.

Shi, H.

Y. Zhao, W. Shi, H. Shi, W. Liu, Z. Wang, and J. Zhang, “Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks,” IEEE Access, vol. 8, pp. 9358–9370, 2020.

Shi, W.

Y. Zhao, W. Shi, H. Shi, W. Liu, Z. Wang, and J. Zhang, “Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks,” IEEE Access, vol. 8, pp. 9358–9370, 2020.

Sorokian, M.

Sousa, E. S.

S. Henry, A. Alsohaily, and E. S. Sousa, “5G is real: Evaluating the compliance of the 3GPP 5G new radio system with the ITU IMT-2020 requirements,” IEEE Access, vol. 8, pp. 42828–42840, 2020.

Sung, H. K.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 1005–1007, 2007.

Tan, Z.

Y. Gao, Z. Tan, X. Chen, and G. Chen, “A hybrid algorithm for multi-beam steering of LCOS-based wavelength selective switch,” IEEE Photon. J., vol. 12, no. 3, 2020, Art. no. .

Tanoli, S. A. K.

S. A. K. Tanoli, “Impact of relay location of STANC bi-directional transmission for future autonomous internet of things applications,” IEEE Access, vol. 8, pp. 29395–29406, 2020.

Theodoridis, S.

I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the 6G network era: Opportunities and challenges,” IEEE IT Prof., vol. 22, no. 1, pp. 34–38, 2020.

Tillett, D.

S. Mechels, L. Muller, G. D. Morley, and D. Tillett, “1D MEMS-based wavelength switching subsystem,” IEEE Commun. Mag., vol. 29, no. 24, pp. 88–94, 2003.

Tomkos, I.

I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the 6G network era: Opportunities and challenges,” IEEE IT Prof., vol. 22, no. 1, pp. 34–38, 2020.

Tsai, S. E.

C. Y. Li, H. W. Wu, H. H. Lu, W. S. Tsai, S. E. Tsai, and J. Y. Xie, “A hybrid internet/CATV/5G fiber-FSO integrated system with a triple-wavelength polarization multiplexing scenario,” IEEE Access, vol. 7, pp. 151023–151033, 2020.

D. Fujimoto, H. H. Lu, K. Kumamoto, S. E. Tsai, Q. P. Huang, and J. Y. Xie, “Phase-modulated hybrid high-speed Internet/WiFi/Pre-5G in-building networks over SMF and PCF with GI-POF/IVLLC transport,” IEEE Access, vol. 7, pp. 90620–90629, 2019.

Tsai, W. S.

C. Y. Li, H. W. Wu, H. H. Lu, W. S. Tsai, S. E. Tsai, and J. Y. Xie, “A hybrid internet/CATV/5G fiber-FSO integrated system with a triple-wavelength polarization multiplexing scenario,” IEEE Access, vol. 7, pp. 151023–151033, 2020.

Tu, L. S.

C. H. Chang, L. S. Tu, Y. S. Huang, and C. Y. Li, “Upgradable radio-over-fiber transport system,” Opt. Eng., vol. 56, no. 10, 2017. Art. no. .

Tu, S. C.

C. Y. Li, X. H. Huang, H. H. Lu, Y. C. Huang, Q. P. Huang, and S. C. Tu, “A WDM PAM4 FSO–UWOC integrated system with a channel capacity of 100 Gb/s,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 7, pp. 1766–1776, 2020.

Upadhya, A.

A. Upadhya, V. K. Dwivedi, and G. K. Karagiannidis, “On the effect of interference and misalignment error in mixed RF/FSO systems over generalized fading channels,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3681–3695, 2020.

Wang, H.

W. Li, N. H. Zhu, L. X. Wang, and H. Wang, “Broadband phase-to-intensity modulation conversion for microwave photonics processing using Brillouin-assisted carrier phase shift,” IEEE/OSA J. Lightw. Technol., vol. 29, no. 24, pp. 3616–3621, 2011.

Wang, H. Y.

W. C. Wang, H. Y. Wang, and G. R. Lin, “Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s,” Sci. Rep., vol. 8, 2018, Art. no. .

Wang, L. X.

W. Li, N. H. Zhu, L. X. Wang, and H. Wang, “Broadband phase-to-intensity modulation conversion for microwave photonics processing using Brillouin-assisted carrier phase shift,” IEEE/OSA J. Lightw. Technol., vol. 29, no. 24, pp. 3616–3621, 2011.

Wang, W. C.

W. C. Wang, H. Y. Wang, and G. R. Lin, “Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s,” Sci. Rep., vol. 8, 2018, Art. no. .

Wang, Z.

Y. Zhao, W. Shi, H. Shi, W. Liu, Z. Wang, and J. Zhang, “Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks,” IEEE Access, vol. 8, pp. 9358–9370, 2020.

Wu, H. W.

C. Y. Li, H. W. Wu, H. H. Lu, W. S. Tsai, S. E. Tsai, and J. Y. Xie, “A hybrid internet/CATV/5G fiber-FSO integrated system with a triple-wavelength polarization multiplexing scenario,” IEEE Access, vol. 7, pp. 151023–151033, 2020.

H. W. Wu, “A 448-Gb/s PAM4 FSO communication with polarization-multiplexing injection-locked VCSELs through 600 m free-space link,” IEEE Access, vol. 8, pp. 28859–28866, 2020.

Wu, M. C.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 1005–1007, 2007.

Xie, J. Y.

C. Y. Li, H. W. Wu, H. H. Lu, W. S. Tsai, S. E. Tsai, and J. Y. Xie, “A hybrid internet/CATV/5G fiber-FSO integrated system with a triple-wavelength polarization multiplexing scenario,” IEEE Access, vol. 7, pp. 151023–151033, 2020.

D. Fujimoto, H. H. Lu, K. Kumamoto, S. E. Tsai, Q. P. Huang, and J. Y. Xie, “Phase-modulated hybrid high-speed Internet/WiFi/Pre-5G in-building networks over SMF and PCF with GI-POF/IVLLC transport,” IEEE Access, vol. 7, pp. 90620–90629, 2019.

Xie, Y. R.

C. H. Yeh, W. P. Lin, C. M. Luo, Y. R. Xie, Y. J. Chang, and C. W. Chow, “Utilizing single lightwave for delivering baseband/FSO/MMW traffics simultaneously in PON architecture,” IEEE Access, vol. 7, pp. 138927–138931, 2019.

Yang, Y.

Y. Yang, “Multi-tier computing networks for intelligent IoT,” Nat. Electron., vol. 2, pp. 4–5, 2019.

Yeh, C. H.

C. H. Yeh, W. P. Lin, C. M. Luo, Y. R. Xie, Y. J. Chang, and C. W. Chow, “Utilizing single lightwave for delivering baseband/FSO/MMW traffics simultaneously in PON architecture,” IEEE Access, vol. 7, pp. 138927–138931, 2019.

Zhang, J.

Y. Zhao, W. Shi, H. Shi, W. Liu, Z. Wang, and J. Zhang, “Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks,” IEEE Access, vol. 8, pp. 9358–9370, 2020.

J. Zhang, “Fiber–wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique,” Opt. Lett., vol. 41, no. 9, pp. 1909–1912, 2016.

Zhao, Y.

Y. Zhao, W. Shi, H. Shi, W. Liu, Z. Wang, and J. Zhang, “Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks,” IEEE Access, vol. 8, pp. 9358–9370, 2020.

Zhu, N. H.

W. Li, N. H. Zhu, L. X. Wang, and H. Wang, “Broadband phase-to-intensity modulation conversion for microwave photonics processing using Brillouin-assisted carrier phase shift,” IEEE/OSA J. Lightw. Technol., vol. 29, no. 24, pp. 3616–3621, 2011.

Adv. Opt. Photon. (1)

IEEE Access (7)

S. A. K. Tanoli, “Impact of relay location of STANC bi-directional transmission for future autonomous internet of things applications,” IEEE Access, vol. 8, pp. 29395–29406, 2020.

C. Y. Li, H. W. Wu, H. H. Lu, W. S. Tsai, S. E. Tsai, and J. Y. Xie, “A hybrid internet/CATV/5G fiber-FSO integrated system with a triple-wavelength polarization multiplexing scenario,” IEEE Access, vol. 7, pp. 151023–151033, 2020.

S. Henry, A. Alsohaily, and E. S. Sousa, “5G is real: Evaluating the compliance of the 3GPP 5G new radio system with the ITU IMT-2020 requirements,” IEEE Access, vol. 8, pp. 42828–42840, 2020.

H. W. Wu, “A 448-Gb/s PAM4 FSO communication with polarization-multiplexing injection-locked VCSELs through 600 m free-space link,” IEEE Access, vol. 8, pp. 28859–28866, 2020.

D. Fujimoto, H. H. Lu, K. Kumamoto, S. E. Tsai, Q. P. Huang, and J. Y. Xie, “Phase-modulated hybrid high-speed Internet/WiFi/Pre-5G in-building networks over SMF and PCF with GI-POF/IVLLC transport,” IEEE Access, vol. 7, pp. 90620–90629, 2019.

Y. Zhao, W. Shi, H. Shi, W. Liu, Z. Wang, and J. Zhang, “Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks,” IEEE Access, vol. 8, pp. 9358–9370, 2020.

C. H. Yeh, W. P. Lin, C. M. Luo, Y. R. Xie, Y. J. Chang, and C. W. Chow, “Utilizing single lightwave for delivering baseband/FSO/MMW traffics simultaneously in PON architecture,” IEEE Access, vol. 7, pp. 138927–138931, 2019.

IEEE Commun. Mag. (1)

S. Mechels, L. Muller, G. D. Morley, and D. Tillett, “1D MEMS-based wavelength switching subsystem,” IEEE Commun. Mag., vol. 29, no. 24, pp. 88–94, 2003.

IEEE Commun. Surveys Tuts. (1)

H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 57–96, 2017.

IEEE IT Prof. (1)

I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the 6G network era: Opportunities and challenges,” IEEE IT Prof., vol. 22, no. 1, pp. 34–38, 2020.

IEEE J. Quantum Electron. (1)

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron., vol. 33, no. 9, pp. 1582–1591, 1997.

IEEE Photon. J (1)

T. Mochii, “A flexibly bidirectional wireless-over-fiber transport system,” IEEE Photon. J, vol. 7, no. 6, 2015, Art. no. .

IEEE Photon. J. (1)

Y. Gao, Z. Tan, X. Chen, and G. Chen, “A hybrid algorithm for multi-beam steering of LCOS-based wavelength selective switch,” IEEE Photon. J., vol. 12, no. 3, 2020, Art. no. .

IEEE Photon. Technol. Lett. (3)

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 1005–1007, 2007.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1942–1944, 2004.

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 463–465, 2008.

IEEE Trans. Broadcast. (1)

E. Garro, “5G mixed mode: NR multicast-broadcast services,” IEEE Trans. Broadcast., vol. 66, no. 2, pp. 390–403, 2020.

IEEE Trans. Commun. (1)

A. Upadhya, V. K. Dwivedi, and G. K. Karagiannidis, “On the effect of interference and misalignment error in mixed RF/FSO systems over generalized fading channels,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3681–3695, 2020.

IEEE Trans. Microw. Theory Tech. (1)

E. I. Ackerman, C. Cox, III, G. Betts, H. Roussell, K. Ray, and F. O'Donnell, “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2025–2031, 1998.

IEEE Trans. Wirel. Commun. (1)

M. V. Jamali and H. Mahdavifar, “Uplink non-orthogonal multiple access over mixed RF-FSO systems,” IEEE Trans. Wirel. Commun., vol. 19, no. 5, pp. 3558–3574, 2020.

IEEE/OSA J. Lightw. Technol. (4)

N. Eiselt, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G Ethernet-based fronthaul architecture,” IEEE/OSA J. Lightw. Technol., vol. 36, no. 10, pp. 1807–1814, 2018.

C. Y. Li, X. H. Huang, H. H. Lu, Y. C. Huang, Q. P. Huang, and S. C. Tu, “A WDM PAM4 FSO–UWOC integrated system with a channel capacity of 100 Gb/s,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 7, pp. 1766–1776, 2020.

W. Li, N. H. Zhu, L. X. Wang, and H. Wang, “Broadband phase-to-intensity modulation conversion for microwave photonics processing using Brillouin-assisted carrier phase shift,” IEEE/OSA J. Lightw. Technol., vol. 29, no. 24, pp. 3616–3621, 2011.

Y. H. Lin, “100-Gbit/s/λ EML transmitter and PIN-PD+TIA receiver-based inter-data center link,” IEEE/OSA J. Lightw. Technol., vol. 38, no. 8, pp. 2144–2151, 2020.

Nat. Electron. (1)

Y. Yang, “Multi-tier computing networks for intelligent IoT,” Nat. Electron., vol. 2, pp. 4–5, 2019.

Opt. Eng. (1)

C. H. Chang, L. S. Tu, Y. S. Huang, and C. Y. Li, “Upgradable radio-over-fiber transport system,” Opt. Eng., vol. 56, no. 10, 2017. Art. no. .

Opt. Express (3)

Opt. Lett. (2)

Sci. Rep. (1)

W. C. Wang, H. Y. Wang, and G. R. Lin, “Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s,” Sci. Rep., vol. 8, 2018, Art. no. .

Other (5)

Y. W. Chen, “Asynchronous multi-service fiber-wireless integrated network using UFMC and PS for flexible 5G applications,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2020, pp. 1–3.

T. Kusunoki, T. Kurakake, K. Otsuki, and K. Saito, “Improvement of 4K/8K multi-channel IP multicast using DOCSIS over in-building coaxial cable network,” in Proc. IEEE Intl. Conf. Consum. Electron. (ICCE), 2019, pp. 1–5.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd Ed., Bellingham, WA, USA: SPIE Press, 2005.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” in Proc. SPIE, vol. 4214, pp. 26–37, 2001.

2020. [Online]. Available: http://www.voscom.com/trainning/fiber-optic-dispersion.asp

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.