Abstract

This article demonstrates the design, assembly, optimisation, and characterisation of 24 [1 × 12] wavelength selective switches (WSSs) based on a single set of optics and a 4k liquid crystal on silicon (LCoS) device. The average insertion loss was measured to be 8.4 dB with an average crosstalk level of 26.9 dB. To our knowledge, this module with 312 fibre ports is the highest-capacity WSS demonstrated so far. The module can be flexibly reconfigured into different switches and port counts for advanced reconfigurable optical add/drop multiplexer (ROADM) applications.

PDF Article

References

  • View by:

  1. S. Frisken, S. B. Poole, and G. W. Baxter, “Wavelength-selective reconfiguration in transparent agile optical networks,” Proc. IEEE, vol. 100, no. 5, pp. 1056–1064, 2012.
  2. P. D. Colbourne and B. Collings, “ROADM switching technologies,” in Proc. Optical Fiber Commun. Conf., 2011, Art. no. .
  3. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.
  4. M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Proc. Opt. Fiber Telecommun. Vol B: Syst. Netw. (Eds I. P. Kaminow, T. Li, A. E. Willner), Academic Press, San Diego, 2008, Ch. 8, pp. 293–343.
  5. S. J. B. Yoo, Y. Yin, and K. Wen, “Intra and inter datacenter networking: The role of optical packet switching and flexible bandwidth optical networking,” in Proc. 16th Int. Conf. Optical Netw. Design Modelling (ONDM),2012, ED-14, pp. 1–6.
  6. M. Filer and S. Tibuleac, “N-degree ROADM architecture comparison: Broadcast-and-select versus route-and-select in 120 Gb/s DP-QPSK transmission systems,” in Proc. Optical Fiber Commun. Conf., 2014, Paper Th1I.2.
  7. L. Zong, H. Zhao, Z. Feng, and Y. Yan, “8 x 8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photon. Technol. Lett., vol. 27, no. 24, pp. 2603–2606,  2015.
  8. A. Lord, Y. R. Zhou, R. Jensen, A. Morea, and M. Ruiz, Evolution from wavelength-switched to flex-grid optical networks BT – elastic optical networks: Architectures, technologies and controlV. López and L. Velasco, Eds. Cham: Springer International Publishing, 2016, pp. 7–30.
  9. G. Baxter, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., Tech. Digest (CD), 2006, Paper OTuF2.
  10. T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 5, pp. 1150–1157,  2010.
  11. D. M. Marom, “Wavelength-selective 1 x K switches using free-space optics and MEMS micromirrors: Theory, design, and implementation,” J. Lightw. Technol., vol. 23, no. 4, pp. 1620–1630, 2005.
  12. Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl., vol. 3, 2014, Paper e213.
  13. S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper OTuM3.
  14. H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Low-cost CDC ROADM architecture based on stacked wavelength selective switches,” J. Opt. Commun. Netw., vol. 9, no. 5, pp. 375–384, 2017.
  15. B. C. Collings, “Advanced ROADM technologies and architectures,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2015, Paper Tu3D.3.
  16. 2015. [Online]. Available: https://www.lumentum.com/en/products/trueflex-twin-high-port-count-wavelength-selective-switch-twin-wss
  17. 2017. [Online]. Available: https://www.finisar.com/sites/default/files/downloads/finisar_dual_wss_product_brief_standard_and_low_profile_0917.pdf
  18. Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance [invited],” J. Opt. Commun. Netw., vol. 4, no. 11, pp. B58–B67, 2012.
  19. W. I. Way, “Optimum architecture for M×N multicast switch-based colorless, directionless, contentionless, and flexible-grid ROADM,” in Proc. Nat. Fiber Optic Eng. Conf., 2012, Paper NW3F.5.
  20. Y. Ma, “Novel CDC ROADM architecture utilizing low loss WSS and MCS without necessity of inline amplifier and filter,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper M1A.3.
  21. L. Pascar, R. Karubi, B. Frenkel, and D. Marom, “Port-reconfigurable, wavelength-selective switch array for colorless/directionless/contentionless optical add/drop multiplexing,” in Proc. Int. Conf. Photon. Switching (PS), 2015, pp. 16–18.
  22. Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “8 × 24 wavelength selective switch for low-loss transponder aggregator,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), 2015, Paper Th5A.4.
  23. K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.
  24. P. D. Colbourne, S. McLaughlin, C. Murley, S. Gaudet, and D. Burke, “Contentionless twin 8×24 WSS with low insertion loss,” in Proc. Opt. Fiber Commun. Conf. Expos. (OFC),2018, Paper Th4A.1.
  25. P. Wilkinson, “24 1×12 wavelength-selective switches using a 312-port 3D waveguide and a single 4k LCoS,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), 2020, Paper M3F.2.
  26. N. D. Psaila, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Opt. Express, vol. 14, no. 22, pp. 10452–10459, 2006.
  27. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev., vol. 8, no. 6, pp. 827–846, 2014.
  28. H. Yang, P. Dolan, B. Robertson, P. Wilkinson, and D. Chu, “Crosstalk spectrum optimisation for stacked wavelength selective switches based on 2D beam steering,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2018, Paper Th1J.2.
  29. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2016.
  30. H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1x12 stacked wavelength selective switches,” Opt. Express, vol. 24, no. 11, pp. 12240–12253, 2016.
  31. S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightw. Technol., vol. 28, no. 4, pp. 557–568, 2010.
  32. T. Zami, B. Lavigne, and E. Balmefrezol, “Crosstalk analysis applied to Wavelength Selective Switches,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2006, Paper OFP4.
  33. C. Pulikkaseril, L. A Stewart, M. A F. Roelens, G. W. Baxter, S. Poole, and S. Frisken, “Spectral modeling of channel band shapes in wavelength selective switches,” Opt. Express, vol. 19, no. 9, pp. 8458–8470, 2011.
  34. H. Yanget al., “Impact of WSS passband narrowing effect on the capacity of the flexible-spectrum networks,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2017, Paper W1I.5.
  35. Z. Zhang, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol., vol. 7, no. 3, pp. 120–126, 2011.
  36. H. Yang and D. P. Chu, “Phase flicker optimisation in digital liquid crystal on silicon devices,” Opt. Express, vol. 27, no. 17, pp. 24556–24567, 2019.
  37. H. Yang and D. P. Chu, “Digital phase-only liquid crystal on silicon device with enhanced optical efficiency,” OSA Contin., vol. 2, no. 8, pp. 2445–2459, 2019.
  38. B. Robertsonet al., “The use of wavefront encoding to reduce crosstalk in a multicasting fiber telecom switch,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2012, Paper OM2J.6.

2019 (2)

H. Yang and D. P. Chu, “Phase flicker optimisation in digital liquid crystal on silicon devices,” Opt. Express, vol. 27, no. 17, pp. 24556–24567, 2019.

H. Yang and D. P. Chu, “Digital phase-only liquid crystal on silicon device with enhanced optical efficiency,” OSA Contin., vol. 2, no. 8, pp. 2445–2459, 2019.

2017 (2)

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Low-cost CDC ROADM architecture based on stacked wavelength selective switches,” J. Opt. Commun. Netw., vol. 9, no. 5, pp. 375–384, 2017.

K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.

2016 (2)

2015 (1)

L. Zong, H. Zhao, Z. Feng, and Y. Yan, “8 x 8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photon. Technol. Lett., vol. 27, no. 24, pp. 2603–2606,  2015.

2014 (2)

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl., vol. 3, 2014, Paper e213.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev., vol. 8, no. 6, pp. 827–846, 2014.

2012 (2)

S. Frisken, S. B. Poole, and G. W. Baxter, “Wavelength-selective reconfiguration in transparent agile optical networks,” Proc. IEEE, vol. 100, no. 5, pp. 1056–1064, 2012.

Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance [invited],” J. Opt. Commun. Netw., vol. 4, no. 11, pp. B58–B67, 2012.

2011 (2)

C. Pulikkaseril, L. A Stewart, M. A F. Roelens, G. W. Baxter, S. Poole, and S. Frisken, “Spectral modeling of channel band shapes in wavelength selective switches,” Opt. Express, vol. 19, no. 9, pp. 8458–8470, 2011.

Z. Zhang, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol., vol. 7, no. 3, pp. 120–126, 2011.

2010 (3)

S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightw. Technol., vol. 28, no. 4, pp. 557–568, 2010.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 5, pp. 1150–1157,  2010.

2006 (1)

2005 (1)

D. M. Marom, “Wavelength-selective 1 x K switches using free-space optics and MEMS micromirrors: Theory, design, and implementation,” J. Lightw. Technol., vol. 23, no. 4, pp. 1620–1630, 2005.

Abakoumov, D.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper OTuM3.

Balmefrezol, E.

T. Zami, B. Lavigne, and E. Balmefrezol, “Crosstalk analysis applied to Wavelength Selective Switches,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2006, Paper OFP4.

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

Baxter, G.

G. Baxter, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., Tech. Digest (CD), 2006, Paper OTuF2.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper OTuM3.

Baxter, G. W.

S. Frisken, S. B. Poole, and G. W. Baxter, “Wavelength-selective reconfiguration in transparent agile optical networks,” Proc. IEEE, vol. 100, no. 5, pp. 1056–1064, 2012.

C. Pulikkaseril, L. A Stewart, M. A F. Roelens, G. W. Baxter, S. Poole, and S. Frisken, “Spectral modeling of channel band shapes in wavelength selective switches,” Opt. Express, vol. 19, no. 9, pp. 8458–8470, 2011.

Burke, D.

P. D. Colbourne, S. McLaughlin, C. Murley, S. Gaudet, and D. Burke, “Contentionless twin 8×24 WSS with low insertion loss,” in Proc. Opt. Fiber Commun. Conf. Expos. (OFC),2018, Paper Th4A.1.

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev., vol. 8, no. 6, pp. 827–846, 2014.

Chu, D.

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Low-cost CDC ROADM architecture based on stacked wavelength selective switches,” J. Opt. Commun. Netw., vol. 9, no. 5, pp. 375–384, 2017.

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1x12 stacked wavelength selective switches,” Opt. Express, vol. 24, no. 11, pp. 12240–12253, 2016.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl., vol. 3, 2014, Paper e213.

H. Yang, P. Dolan, B. Robertson, P. Wilkinson, and D. Chu, “Crosstalk spectrum optimisation for stacked wavelength selective switches based on 2D beam steering,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2018, Paper Th1J.2.

Chu, D. P.

H. Yang and D. P. Chu, “Phase flicker optimisation in digital liquid crystal on silicon devices,” Opt. Express, vol. 27, no. 17, pp. 24556–24567, 2019.

H. Yang and D. P. Chu, “Digital phase-only liquid crystal on silicon device with enhanced optical efficiency,” OSA Contin., vol. 2, no. 8, pp. 2445–2459, 2019.

Clarke, I.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper OTuM3.

Colbourne, P. D.

P. D. Colbourne, S. McLaughlin, C. Murley, S. Gaudet, and D. Burke, “Contentionless twin 8×24 WSS with low insertion loss,” in Proc. Opt. Fiber Commun. Conf. Expos. (OFC),2018, Paper Th4A.1.

P. D. Colbourne and B. Collings, “ROADM switching technologies,” in Proc. Optical Fiber Commun. Conf., 2011, Art. no. .

Collings, B.

P. D. Colbourne and B. Collings, “ROADM switching technologies,” in Proc. Optical Fiber Commun. Conf., 2011, Art. no. .

Collings, B. C.

B. C. Collings, “Advanced ROADM technologies and architectures,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2015, Paper Tu3D.3.

Dolan, P.

H. Yang, P. Dolan, B. Robertson, P. Wilkinson, and D. Chu, “Crosstalk spectrum optimisation for stacked wavelength selective switches based on 2D beam steering,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2018, Paper Th1J.2.

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

Feng, Z.

L. Zong, H. Zhao, Z. Feng, and Y. Yan, “8 x 8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photon. Technol. Lett., vol. 27, no. 24, pp. 2603–2606,  2015.

Feuer, M. D.

M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Proc. Opt. Fiber Telecommun. Vol B: Syst. Netw. (Eds I. P. Kaminow, T. Li, A. E. Willner), Academic Press, San Diego, 2008, Ch. 8, pp. 293–343.

Filer, M.

S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightw. Technol., vol. 28, no. 4, pp. 557–568, 2010.

M. Filer and S. Tibuleac, “N-degree ROADM architecture comparison: Broadcast-and-select versus route-and-select in 120 Gb/s DP-QPSK transmission systems,” in Proc. Optical Fiber Commun. Conf., 2014, Paper Th1I.2.

Frenkel, B.

L. Pascar, R. Karubi, B. Frenkel, and D. Marom, “Port-reconfigurable, wavelength-selective switch array for colorless/directionless/contentionless optical add/drop multiplexing,” in Proc. Int. Conf. Photon. Switching (PS), 2015, pp. 16–18.

Frisken, S.

S. Frisken, S. B. Poole, and G. W. Baxter, “Wavelength-selective reconfiguration in transparent agile optical networks,” Proc. IEEE, vol. 100, no. 5, pp. 1056–1064, 2012.

C. Pulikkaseril, L. A Stewart, M. A F. Roelens, G. W. Baxter, S. Poole, and S. Frisken, “Spectral modeling of channel band shapes in wavelength selective switches,” Opt. Express, vol. 19, no. 9, pp. 8458–8470, 2011.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper OTuM3.

Gao, L.

Gaudet, S.

P. D. Colbourne, S. McLaughlin, C. Murley, S. Gaudet, and D. Burke, “Contentionless twin 8×24 WSS with low insertion loss,” in Proc. Opt. Fiber Commun. Conf. Expos. (OFC),2018, Paper Th4A.1.

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

Hashimoto, E.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “8 × 24 wavelength selective switch for low-loss transponder aggregator,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), 2015, Paper Th5A.4.

Ikuma, Y.

K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “8 × 24 wavelength selective switch for low-loss transponder aggregator,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), 2015, Paper Th5A.4.

Jensen, R.

A. Lord, Y. R. Zhou, R. Jensen, A. Morea, and M. Ruiz, Evolution from wavelength-switched to flex-grid optical networks BT – elastic optical networks: Architectures, technologies and controlV. López and L. Velasco, Eds. Cham: Springer International Publishing, 2016, pp. 7–30.

Kar, A. K.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev., vol. 8, no. 6, pp. 827–846, 2014.

Karubi, R.

L. Pascar, R. Karubi, B. Frenkel, and D. Marom, “Port-reconfigurable, wavelength-selective switch array for colorless/directionless/contentionless optical add/drop multiplexing,” in Proc. Int. Conf. Photon. Switching (PS), 2015, pp. 16–18.

Kilper, D. C.

M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Proc. Opt. Fiber Telecommun. Vol B: Syst. Netw. (Eds I. P. Kaminow, T. Li, A. E. Willner), Academic Press, San Diego, 2008, Ch. 8, pp. 293–343.

Lavigne, B.

T. Zami, B. Lavigne, and E. Balmefrezol, “Crosstalk analysis applied to Wavelength Selective Switches,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2006, Paper OFP4.

Li, Y.

Lord, A.

A. Lord, Y. R. Zhou, R. Jensen, A. Morea, and M. Ruiz, Evolution from wavelength-switched to flex-grid optical networks BT – elastic optical networks: Architectures, technologies and controlV. López and L. Velasco, Eds. Cham: Springer International Publishing, 2016, pp. 7–30.

Ma, Y.

Y. Ma, “Novel CDC ROADM architecture utilizing low loss WSS and MCS without necessity of inline amplifier and filter,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper M1A.3.

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev., vol. 8, no. 6, pp. 827–846, 2014.

Marom, D.

L. Pascar, R. Karubi, B. Frenkel, and D. Marom, “Port-reconfigurable, wavelength-selective switch array for colorless/directionless/contentionless optical add/drop multiplexing,” in Proc. Int. Conf. Photon. Switching (PS), 2015, pp. 16–18.

Marom, D. M.

D. M. Marom, “Wavelength-selective 1 x K switches using free-space optics and MEMS micromirrors: Theory, design, and implementation,” J. Lightw. Technol., vol. 23, no. 4, pp. 1620–1630, 2005.

Matsuo, S.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2016.

McLaughlin, S.

P. D. Colbourne, S. McLaughlin, C. Murley, S. Gaudet, and D. Burke, “Contentionless twin 8×24 WSS with low insertion loss,” in Proc. Opt. Fiber Commun. Conf. Expos. (OFC),2018, Paper Th4A.1.

Morea, A.

A. Lord, Y. R. Zhou, R. Jensen, A. Morea, and M. Ruiz, Evolution from wavelength-switched to flex-grid optical networks BT – elastic optical networks: Architectures, technologies and controlV. López and L. Velasco, Eds. Cham: Springer International Publishing, 2016, pp. 7–30.

Moriwaki, O.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “8 × 24 wavelength selective switch for low-loss transponder aggregator,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), 2015, Paper Th5A.4.

Murley, C.

P. D. Colbourne, S. McLaughlin, C. Murley, S. Gaudet, and D. Burke, “Contentionless twin 8×24 WSS with low insertion loss,” in Proc. Opt. Fiber Commun. Conf. Expos. (OFC),2018, Paper Th4A.1.

Nemoto, N.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “8 × 24 wavelength selective switch for low-loss transponder aggregator,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), 2015, Paper Th5A.4.

Pascar, L.

L. Pascar, R. Karubi, B. Frenkel, and D. Marom, “Port-reconfigurable, wavelength-selective switch array for colorless/directionless/contentionless optical add/drop multiplexing,” in Proc. Int. Conf. Photon. Switching (PS), 2015, pp. 16–18.

Peng, L.

Poole, S.

C. Pulikkaseril, L. A Stewart, M. A F. Roelens, G. W. Baxter, S. Poole, and S. Frisken, “Spectral modeling of channel band shapes in wavelength selective switches,” Opt. Express, vol. 19, no. 9, pp. 8458–8470, 2011.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper OTuM3.

Poole, S. B.

S. Frisken, S. B. Poole, and G. W. Baxter, “Wavelength-selective reconfiguration in transparent agile optical networks,” Proc. IEEE, vol. 100, no. 5, pp. 1056–1064, 2012.

Psaila, N. D.

Pulikkaseril, C.

Robertson, B.

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Low-cost CDC ROADM architecture based on stacked wavelength selective switches,” J. Opt. Commun. Netw., vol. 9, no. 5, pp. 375–384, 2017.

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1x12 stacked wavelength selective switches,” Opt. Express, vol. 24, no. 11, pp. 12240–12253, 2016.

H. Yang, P. Dolan, B. Robertson, P. Wilkinson, and D. Chu, “Crosstalk spectrum optimisation for stacked wavelength selective switches based on 2D beam steering,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2018, Paper Th1J.2.

B. Robertsonet al., “The use of wavefront encoding to reduce crosstalk in a multicasting fiber telecom switch,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2012, Paper OM2J.6.

Roelens, M. A F.

Ruiz, M.

A. Lord, Y. R. Zhou, R. Jensen, A. Morea, and M. Ruiz, Evolution from wavelength-switched to flex-grid optical networks BT – elastic optical networks: Architectures, technologies and controlV. López and L. Velasco, Eds. Cham: Springer International Publishing, 2016, pp. 7–30.

Saitoh, K.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2016.

Seno, K.

K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.

Shen, G.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

Stewart, L. A

Strasser, T.

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 5, pp. 1150–1157,  2010.

Suzuki, K.

K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “8 × 24 wavelength selective switch for low-loss transponder aggregator,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), 2015, Paper Th5A.4.

Takahashi, T.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “8 × 24 wavelength selective switch for low-loss transponder aggregator,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), 2015, Paper Th5A.4.

Tibuleac, S.

S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightw. Technol., vol. 28, no. 4, pp. 557–568, 2010.

M. Filer and S. Tibuleac, “N-degree ROADM architecture comparison: Broadcast-and-select versus route-and-select in 120 Gb/s DP-QPSK transmission systems,” in Proc. Optical Fiber Commun. Conf., 2014, Paper Th1I.2.

Wagener, J.

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 5, pp. 1150–1157,  2010.

Way, W. I.

W. I. Way, “Optimum architecture for M×N multicast switch-based colorless, directionless, contentionless, and flexible-grid ROADM,” in Proc. Nat. Fiber Optic Eng. Conf., 2012, Paper NW3F.5.

Wen, K.

S. J. B. Yoo, Y. Yin, and K. Wen, “Intra and inter datacenter networking: The role of optical packet switching and flexible bandwidth optical networking,” in Proc. 16th Int. Conf. Optical Netw. Design Modelling (ONDM),2012, ED-14, pp. 1–6.

Wilkinson, P.

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Low-cost CDC ROADM architecture based on stacked wavelength selective switches,” J. Opt. Commun. Netw., vol. 9, no. 5, pp. 375–384, 2017.

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1x12 stacked wavelength selective switches,” Opt. Express, vol. 24, no. 11, pp. 12240–12253, 2016.

H. Yang, P. Dolan, B. Robertson, P. Wilkinson, and D. Chu, “Crosstalk spectrum optimisation for stacked wavelength selective switches based on 2D beam steering,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2018, Paper Th1J.2.

P. Wilkinson, “24 1×12 wavelength-selective switches using a 312-port 3D waveguide and a single 4k LCoS,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), 2020, Paper M3F.2.

Woodward, S. L.

M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Proc. Opt. Fiber Telecommun. Vol B: Syst. Netw. (Eds I. P. Kaminow, T. Li, A. E. Willner), Academic Press, San Diego, 2008, Ch. 8, pp. 293–343.

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

Yan, Y.

L. Zong, H. Zhao, Z. Feng, and Y. Yan, “8 x 8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photon. Technol. Lett., vol. 27, no. 24, pp. 2603–2606,  2015.

Yang, H.

H. Yang and D. P. Chu, “Digital phase-only liquid crystal on silicon device with enhanced optical efficiency,” OSA Contin., vol. 2, no. 8, pp. 2445–2459, 2019.

H. Yang and D. P. Chu, “Phase flicker optimisation in digital liquid crystal on silicon devices,” Opt. Express, vol. 27, no. 17, pp. 24556–24567, 2019.

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Low-cost CDC ROADM architecture based on stacked wavelength selective switches,” J. Opt. Commun. Netw., vol. 9, no. 5, pp. 375–384, 2017.

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1x12 stacked wavelength selective switches,” Opt. Express, vol. 24, no. 11, pp. 12240–12253, 2016.

H. Yang, P. Dolan, B. Robertson, P. Wilkinson, and D. Chu, “Crosstalk spectrum optimisation for stacked wavelength selective switches based on 2D beam steering,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2018, Paper Th1J.2.

H. Yanget al., “Impact of WSS passband narrowing effect on the capacity of the flexible-spectrum networks,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2017, Paper W1I.5.

Yin, Y.

S. J. B. Yoo, Y. Yin, and K. Wen, “Intra and inter datacenter networking: The role of optical packet switching and flexible bandwidth optical networking,” in Proc. 16th Int. Conf. Optical Netw. Design Modelling (ONDM),2012, ED-14, pp. 1–6.

Yoo, S. J. B.

S. J. B. Yoo, Y. Yin, and K. Wen, “Intra and inter datacenter networking: The role of optical packet switching and flexible bandwidth optical networking,” in Proc. 16th Int. Conf. Optical Netw. Design Modelling (ONDM),2012, ED-14, pp. 1–6.

You, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl., vol. 3, 2014, Paper e213.

Zami, T.

T. Zami, B. Lavigne, and E. Balmefrezol, “Crosstalk analysis applied to Wavelength Selective Switches,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2006, Paper OFP4.

Zhang, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl., vol. 3, 2014, Paper e213.

Z. Zhang, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol., vol. 7, no. 3, pp. 120–126, 2011.

Zhao, H.

L. Zong, H. Zhao, Z. Feng, and Y. Yan, “8 x 8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photon. Technol. Lett., vol. 27, no. 24, pp. 2603–2606,  2015.

Zhou, H.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper OTuM3.

Zhou, Y. R.

A. Lord, Y. R. Zhou, R. Jensen, A. Morea, and M. Ruiz, Evolution from wavelength-switched to flex-grid optical networks BT – elastic optical networks: Architectures, technologies and controlV. López and L. Velasco, Eds. Cham: Springer International Publishing, 2016, pp. 7–30.

Zong, L.

L. Zong, H. Zhao, Z. Feng, and Y. Yan, “8 x 8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photon. Technol. Lett., vol. 27, no. 24, pp. 2603–2606,  2015.

IEEE Commun. Mag. (1)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

IEEE J. Sel. Top. Quantum Electron. (1)

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 5, pp. 1150–1157,  2010.

IEEE Photon. Technol. Lett. (1)

L. Zong, H. Zhao, Z. Feng, and Y. Yan, “8 x 8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photon. Technol. Lett., vol. 27, no. 24, pp. 2603–2606,  2015.

J. Disp. Technol. (1)

Z. Zhang, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol., vol. 7, no. 3, pp. 120–126, 2011.

J. Lightw. Technol. (4)

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2016.

S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightw. Technol., vol. 28, no. 4, pp. 557–568, 2010.

K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.

D. M. Marom, “Wavelength-selective 1 x K switches using free-space optics and MEMS micromirrors: Theory, design, and implementation,” J. Lightw. Technol., vol. 23, no. 4, pp. 1620–1630, 2005.

J. Opt. Commun. Netw. (2)

Laser Photon. Rev. (1)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev., vol. 8, no. 6, pp. 827–846, 2014.

Light Sci. Appl. (1)

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl., vol. 3, 2014, Paper e213.

Opt. Express (4)

OSA Contin (1)

H. Yang and D. P. Chu, “Digital phase-only liquid crystal on silicon device with enhanced optical efficiency,” OSA Contin., vol. 2, no. 8, pp. 2445–2459, 2019.

Proc. IEEE (1)

S. Frisken, S. B. Poole, and G. W. Baxter, “Wavelength-selective reconfiguration in transparent agile optical networks,” Proc. IEEE, vol. 100, no. 5, pp. 1056–1064, 2012.

Other (20)

P. D. Colbourne and B. Collings, “ROADM switching technologies,” in Proc. Optical Fiber Commun. Conf., 2011, Art. no. .

A. Lord, Y. R. Zhou, R. Jensen, A. Morea, and M. Ruiz, Evolution from wavelength-switched to flex-grid optical networks BT – elastic optical networks: Architectures, technologies and controlV. López and L. Velasco, Eds. Cham: Springer International Publishing, 2016, pp. 7–30.

G. Baxter, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., Tech. Digest (CD), 2006, Paper OTuF2.

M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Proc. Opt. Fiber Telecommun. Vol B: Syst. Netw. (Eds I. P. Kaminow, T. Li, A. E. Willner), Academic Press, San Diego, 2008, Ch. 8, pp. 293–343.

S. J. B. Yoo, Y. Yin, and K. Wen, “Intra and inter datacenter networking: The role of optical packet switching and flexible bandwidth optical networking,” in Proc. 16th Int. Conf. Optical Netw. Design Modelling (ONDM),2012, ED-14, pp. 1–6.

M. Filer and S. Tibuleac, “N-degree ROADM architecture comparison: Broadcast-and-select versus route-and-select in 120 Gb/s DP-QPSK transmission systems,” in Proc. Optical Fiber Commun. Conf., 2014, Paper Th1I.2.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper OTuM3.

B. C. Collings, “Advanced ROADM technologies and architectures,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2015, Paper Tu3D.3.

2015. [Online]. Available: https://www.lumentum.com/en/products/trueflex-twin-high-port-count-wavelength-selective-switch-twin-wss

2017. [Online]. Available: https://www.finisar.com/sites/default/files/downloads/finisar_dual_wss_product_brief_standard_and_low_profile_0917.pdf

B. Robertsonet al., “The use of wavefront encoding to reduce crosstalk in a multicasting fiber telecom switch,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2012, Paper OM2J.6.

T. Zami, B. Lavigne, and E. Balmefrezol, “Crosstalk analysis applied to Wavelength Selective Switches,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2006, Paper OFP4.

H. Yang, P. Dolan, B. Robertson, P. Wilkinson, and D. Chu, “Crosstalk spectrum optimisation for stacked wavelength selective switches based on 2D beam steering,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2018, Paper Th1J.2.

P. D. Colbourne, S. McLaughlin, C. Murley, S. Gaudet, and D. Burke, “Contentionless twin 8×24 WSS with low insertion loss,” in Proc. Opt. Fiber Commun. Conf. Expos. (OFC),2018, Paper Th4A.1.

P. Wilkinson, “24 1×12 wavelength-selective switches using a 312-port 3D waveguide and a single 4k LCoS,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), 2020, Paper M3F.2.

W. I. Way, “Optimum architecture for M×N multicast switch-based colorless, directionless, contentionless, and flexible-grid ROADM,” in Proc. Nat. Fiber Optic Eng. Conf., 2012, Paper NW3F.5.

Y. Ma, “Novel CDC ROADM architecture utilizing low loss WSS and MCS without necessity of inline amplifier and filter,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper M1A.3.

L. Pascar, R. Karubi, B. Frenkel, and D. Marom, “Port-reconfigurable, wavelength-selective switch array for colorless/directionless/contentionless optical add/drop multiplexing,” in Proc. Int. Conf. Photon. Switching (PS), 2015, pp. 16–18.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “8 × 24 wavelength selective switch for low-loss transponder aggregator,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), 2015, Paper Th5A.4.

H. Yanget al., “Impact of WSS passband narrowing effect on the capacity of the flexible-spectrum networks,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2017, Paper W1I.5.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.