Abstract

Visible light positioning (VLP) is a promising technology since it can provide high accuracy indoor localization based on the existing lighting infrastructure. However, existing approaches often require dense LED distributions and persistent line-of-sight (LOS) between transmitter and receiver. What's more, sensors are imperfect, and their measurements are prone to errors. Through multi sensors fusion, we can compensate the deficiencies of stand-alone sensors and provide more reliable pose estimations. In this work, we propose a loosely-coupled multi-sensor fusion method based on VLP and Simultaneous Localization and Mapping (SLAM), using light detection and ranging (LiDAR), odometry, and rolling shutter camera. Our multi-sensor localizer can provide accurate and robust robot localization and navigation in LED shortage/outage situations. The experimental results show that our proposed scheme can provide an average accuracy of 2.5 cm with around 42 ms average positioning latency.

PDF Article

References

  • View by:

  1. P. Lin, “Real-time visible light positioning supporting fast moving speed,” Opt. Exp., vol. 28, no. 10, pp. 14503–14510, 2020.
  2. J. Armstrong, Y. A. Sekercioglu, and A. Neild, “Visible light positioning: A roadmap for international standardization,” IEEE Commun. Mag., vol. 51, no. 12, pp. 68–73, 2013.
  3. N. Huang, “Design and demonstration of robust visible light positioning based on received signal strength,” J. Lightw. Technol., vol. 38, no. 20, pp. 5695–5707, 2020.
  4. Y. Cai, W. Guan, Y. Wu, C. Xie, Y. Chen, and L. Fang, “Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization,” IEEE Photon. J., vol. 9, no. 6, pp. 1–20, 2017.
  5. B. Chen, “Performance comparison and analysis on different optimization models for high-precision three-dimensional visible light positioning,” Opt. Eng., vol. 57, no. 12, 2018, Art. no. .
  6. R. Amsters, “Visible light positioning using Bayesian filters,” J. Lightw. Technol., vol. 38, no. 21, pp. 5925–5936, 2020.
  7. Y. Yang, J. Hao, and J. Luo, “CeilingTalk: Lightweight indoor broadcast through LED-camera communication,” IEEE Trans. Mobile Comput., vol. 16, no. 12, pp. 3308–3319, 2017.
  8. Y. Kuo, “Luxapose: Indoor positioning with mobile phones and visible light,” in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw., 2014, pp. 447–458.
  9. S. Song, “Employing DIALux to relieve machine-learning training data collection when designing indoor positioning systems,” Opt. Exp., vol. 29, no. 11, pp. 16887–16892, 2021.
  10. Y. Chuang, “Visible light communication and positioning using positioning cells and machine learning algorithms,” Opt. Exp., vol. 27, no. 11, pp. 16377–16383, 2019.
  11. Y. Wu, “Received-signal-strength (RSS) based 3D visible-light-positioning (VLP) system using kernel ridge regression machine learning algorithm with sigmoid function data preprocessing method,” IEEE Access, vol. 8, pp. 214269–214281, 2020.
  12. F. An, “A tilt visible light positioning system based on double LEDs and angle sensors,” Electron., vol. 10, no. 16, 2021, Art. no. .
  13. J. Fang, “High-speed indoor navigation system based on visible light and mobile phone,” IEEE Photon. J., vol. 9, no. 2, pp. 1–11, 2017.
  14. W. Guan, “High-accuracy robot indoor localization scheme based on robot operating system using visible light positioning,” IEEE Photon. J., vol. 12, no. 2, pp. 1–16, 2020.
  15. Q. Liang and M. Liu, “A tightly coupled VLC-inertial localization system by EKF,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 3129–3136, 2020.
  16. Q. Liang, J. Lin, and M. Liu, “Towards robust visible light positioning under LED shortage by visual-inertial fusion,” in Proc. Int. Conf. Indoor Positioning Indoor Navigat., 2019, pp. 1–8.
  17. W. Guan, “Robust robotic localization using visible light positioning and inertial fusion,” IEEE Sensors J., early access, 2021. doi: .
    [Crossref]
  18. V. Nguyen, A. Harati, and R. Siegwart, “A lightweight SLAM algorithm using orthogonal planes for indoor mobile robotics,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2007, pp. 658–663.
  19. C. Hsu, “Visible light positioning and lighting based on identity positioning and RF carrier allocation technique using a solar cell receiver,” IEEE Photon. J., vol. 8, no. 4, pp. 1–7, 2016.
  20. C. Hong, “Angle-of-arrival (AOA) visible light positioning (VLP) system using solar cells with third-order regression and ridge regression algorithms,” IEEE Photon. J., vol. 12, no. 3, pp. 1–5, 2020.
  21. C. Hong, “Visible light positioning (VLP) system using low-cost organic photovoltaic cell (OPVC) for low illumination environments,” Opt. Exp., vol. 28, no. 18, pp. 26137–26142, 2020.
  22. H. Huang, “Hybrid indoor localization scheme with image sensor-based visible light positioning and pedestrian dead reckoning,” Appl. Opt., vol. 58, no. 12, pp. 3214–3221, 2019.
  23. P. Hu, “High speed LED-to-Camera communication using color shift keying with flicker mitigation,” IEEE Trans. Mobile Comput., vol. 19, no. 7, pp. 1603–1617, Jul 2019.
  24. R. Qv, “A high efficient code for visible light positioning system based on image sensor,” Access, vol. 7, pp. 77762–77770, 2019. [Online]. Available: https://search.datacite.org/works/10.1109/access.2019.2921601, doi: .
    [Crossref]
  25. W. Guan, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun., vol. 410, pp. 531–551, 2018.
  26. J. He, “Efficient sampling scheme based on length estimation for optical camera communication,” IEEE Photon. Technol. Lett., vol. 31, no. 11, pp. 841–844, 2019.
  27. Z. Zhou, “Performance enhancement scheme for RSE-based underwater optical camera communication using de-bubble algorithm and binary fringe correction,” Electronics, vol. 10, no. 8, 2021, Art. no. .
  28. Z. Zhou, S. Wen, and W. Guan, “RSE-based optical camera communication in underwater scenery with bubble degradation,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2021.
  29. S. Chen and W. Guan, “High accuracy VLP based on image sensor using error calibration method,” 2020, arXiv:2010.00529.
  30. W. Guan, “High-precision indoor positioning algorithm based on visible light communication using complementary metal–oxide–semiconductor image sensor,” Opt. Eng., vol. 58, no. 2, 2019, Art. no. .
  31. W. Guan, “High precision indoor visible light positioning algorithm based on double LEDs using CMOS image sensor,” Appl. Sci., vol. 9, no. 6, 2019, Art. no. .
  32. H. Lee, “Rollinglight: Enabling line-of-sight light-to-camera communications,” in Proc. 13th Annu. Int. Conf. Mobile Syst., Appl., Serv., 2015, pp. 167–180.
  33. R. Zhang, W. Zhong, Q. Kemao, and S. Zhang, “A single LED positioning system based on circle projection,” IEEE Photon. J., vol. 9, no. 4, pp. 1–9, 2017.
  34. H. Cheng, C. Xiao, Y. Ji, J. Ni, and T. Wang, “A single LED visible light positioning system based on geometric features and CMOS camera,” IEEE Photon. Technol. Lett., vol. 32, no. 17, pp. 1097–1100, 2020.
  35. C. Cadena, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1309–1332, 2016.
  36. H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3D lidar inertial odometry and mapping,” in Proc. Int. Conf. Robot. Automat., 2019, pp. 3144–3150.
  37. W. Hess, “Real-time loop closure in 2D LIDAR SLAM,” in Proc. IEEE Int. Conf. Robot. Automat., 2016, pp. 1271–1278.
  38. B. Steux and O. El Hamzaoui, “tinySLAM: A slam algorithm in less than 200 lines C-language program,” in Proc. 11th Int. Conf. Control Automat. Robot. Vis., 2010, pp. 1975–1979.
  39. M. Montemerlo, “FastSLAM: A factored solution to the simultaneous localization and mapping problem,” Aaai/Iaai, 2002, Art. no. .
  40. S. Kohlbrecher, “Hector open source modules for autonomous mapping and navigation with rescue robots,” in Robot Soccer World Cup, Springer, Berlin, Heidelberg, 2013, pp. 624–631.
  41. G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE Trans. Robot., vol. 23, no. 1, pp. 34–46, 2007.
  42. G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling,” in Proc. IEEE Int. Conf. Robot. Automat., 2005, pp. 2432–2437.
  43. T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard, “Monocular camera localization in 3D lidar maps,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 1926–1931.
  44. S. Chan, P. Wu, and L. Fu, “Robust 2D indoor localization through laser SLAM and visual SLAM fusion,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2018, pp. 1263–1268.
  45. W. Guan, X. Chen, M. Huang, Z. Liu, Y. Wu, and Y. Chen, “High-speed robust dynamic positioning and tracking method based on visual visible light communication using optical flow detection and Bayesian forecast,” IEEE Photon. J., vol. 10, no. 3, pp. 1–22, 2018.
  46. H. Song, “Robust LED region-of-interest tracking for visible light positioning with low complexity,” Opt. Eng., vol. 60, no. 5, 2021, Art. no. .
  47. J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2D SLAM techniques available in robot operating system,” in Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot., 2013, pp. 1–6.
  48. K. Krinkin, “Evaluation of modern laser based indoor slam algorithms,” in Proc. 22nd Conf. Open Innovations Assoc. (FRUCT), 2018, pp. 101–106.
  49. W. Guan, B. Hussain, and P. Yue, “Technology report: Robotic localization and navigation system for visible light positioning and SLAM,” 2021, arXiv: 2104.14755.
  50. E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The office marathon: Robust navigation in an indoor office environment,” in Proc. IEEE Int. Conf. Robot. Automat., 2010, pp. 300–307.
  51. Z. Li, A. Yang, H. Lv, L. Feng, and W. Song, “Fusion of visible light indoor positioning and inertial navigation based on particle filter,” IEEE Photon. J., vol. 9, no. 5, pp. 1–13, 2017.
  52. W. Guan, S. Wen, H. Zhang, and L. Liu, “A novel three-dimensional indoor localization algorithm based on visual visible light communication using single LED,” in Proc. IEEE Int. Conf. Automat., Electron. Elect. Eng., 2018, pp. 202–208.
  53. H. Li, “A fast and high-accuracy real-time visible light positioning system based on single LED lamp with a beacon,” IEEE Photon. J., vol. 12, no. 6, pp. 1–12, Dec. 2020.
  54. Z. Yan, “Multi-robot cooperative localization based on visible light positioning and odometer,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–8, 2021, Art. no. .
  55. L. Huang, “Single LED positioning scheme based on angle sensors in robotics,” Appl. Opt., vol. 60, no. 21, pp. 6275–6287, 2021.

2021 (8)

S. Song, “Employing DIALux to relieve machine-learning training data collection when designing indoor positioning systems,” Opt. Exp., vol. 29, no. 11, pp. 16887–16892, 2021.

F. An, “A tilt visible light positioning system based on double LEDs and angle sensors,” Electron., vol. 10, no. 16, 2021, Art. no. .

W. Guan, “Robust robotic localization using visible light positioning and inertial fusion,” IEEE Sensors J., early access, 2021. doi: .
[Crossref]

Z. Zhou, “Performance enhancement scheme for RSE-based underwater optical camera communication using de-bubble algorithm and binary fringe correction,” Electronics, vol. 10, no. 8, 2021, Art. no. .

H. Song, “Robust LED region-of-interest tracking for visible light positioning with low complexity,” Opt. Eng., vol. 60, no. 5, 2021, Art. no. .

W. Guan, B. Hussain, and P. Yue, “Technology report: Robotic localization and navigation system for visible light positioning and SLAM,” 2021, arXiv: 2104.14755.

Z. Yan, “Multi-robot cooperative localization based on visible light positioning and odometer,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–8, 2021, Art. no. .

L. Huang, “Single LED positioning scheme based on angle sensors in robotics,” Appl. Opt., vol. 60, no. 21, pp. 6275–6287, 2021.

2020 (10)

H. Cheng, C. Xiao, Y. Ji, J. Ni, and T. Wang, “A single LED visible light positioning system based on geometric features and CMOS camera,” IEEE Photon. Technol. Lett., vol. 32, no. 17, pp. 1097–1100, 2020.

S. Chen and W. Guan, “High accuracy VLP based on image sensor using error calibration method,” 2020, arXiv:2010.00529.

C. Hong, “Angle-of-arrival (AOA) visible light positioning (VLP) system using solar cells with third-order regression and ridge regression algorithms,” IEEE Photon. J., vol. 12, no. 3, pp. 1–5, 2020.

C. Hong, “Visible light positioning (VLP) system using low-cost organic photovoltaic cell (OPVC) for low illumination environments,” Opt. Exp., vol. 28, no. 18, pp. 26137–26142, 2020.

W. Guan, “High-accuracy robot indoor localization scheme based on robot operating system using visible light positioning,” IEEE Photon. J., vol. 12, no. 2, pp. 1–16, 2020.

Q. Liang and M. Liu, “A tightly coupled VLC-inertial localization system by EKF,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 3129–3136, 2020.

Y. Wu, “Received-signal-strength (RSS) based 3D visible-light-positioning (VLP) system using kernel ridge regression machine learning algorithm with sigmoid function data preprocessing method,” IEEE Access, vol. 8, pp. 214269–214281, 2020.

R. Amsters, “Visible light positioning using Bayesian filters,” J. Lightw. Technol., vol. 38, no. 21, pp. 5925–5936, 2020.

P. Lin, “Real-time visible light positioning supporting fast moving speed,” Opt. Exp., vol. 28, no. 10, pp. 14503–14510, 2020.

N. Huang, “Design and demonstration of robust visible light positioning based on received signal strength,” J. Lightw. Technol., vol. 38, no. 20, pp. 5695–5707, 2020.

2019 (7)

Y. Chuang, “Visible light communication and positioning using positioning cells and machine learning algorithms,” Opt. Exp., vol. 27, no. 11, pp. 16377–16383, 2019.

H. Huang, “Hybrid indoor localization scheme with image sensor-based visible light positioning and pedestrian dead reckoning,” Appl. Opt., vol. 58, no. 12, pp. 3214–3221, 2019.

P. Hu, “High speed LED-to-Camera communication using color shift keying with flicker mitigation,” IEEE Trans. Mobile Comput., vol. 19, no. 7, pp. 1603–1617, Jul 2019.

R. Qv, “A high efficient code for visible light positioning system based on image sensor,” Access, vol. 7, pp. 77762–77770, 2019. [Online]. Available: https://search.datacite.org/works/10.1109/access.2019.2921601, doi: .
[Crossref]

W. Guan, “High-precision indoor positioning algorithm based on visible light communication using complementary metal–oxide–semiconductor image sensor,” Opt. Eng., vol. 58, no. 2, 2019, Art. no. .

W. Guan, “High precision indoor visible light positioning algorithm based on double LEDs using CMOS image sensor,” Appl. Sci., vol. 9, no. 6, 2019, Art. no. .

J. He, “Efficient sampling scheme based on length estimation for optical camera communication,” IEEE Photon. Technol. Lett., vol. 31, no. 11, pp. 841–844, 2019.

2018 (3)

W. Guan, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun., vol. 410, pp. 531–551, 2018.

B. Chen, “Performance comparison and analysis on different optimization models for high-precision three-dimensional visible light positioning,” Opt. Eng., vol. 57, no. 12, 2018, Art. no. .

W. Guan, X. Chen, M. Huang, Z. Liu, Y. Wu, and Y. Chen, “High-speed robust dynamic positioning and tracking method based on visual visible light communication using optical flow detection and Bayesian forecast,” IEEE Photon. J., vol. 10, no. 3, pp. 1–22, 2018.

2017 (5)

J. Fang, “High-speed indoor navigation system based on visible light and mobile phone,” IEEE Photon. J., vol. 9, no. 2, pp. 1–11, 2017.

Y. Yang, J. Hao, and J. Luo, “CeilingTalk: Lightweight indoor broadcast through LED-camera communication,” IEEE Trans. Mobile Comput., vol. 16, no. 12, pp. 3308–3319, 2017.

Y. Cai, W. Guan, Y. Wu, C. Xie, Y. Chen, and L. Fang, “Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization,” IEEE Photon. J., vol. 9, no. 6, pp. 1–20, 2017.

R. Zhang, W. Zhong, Q. Kemao, and S. Zhang, “A single LED positioning system based on circle projection,” IEEE Photon. J., vol. 9, no. 4, pp. 1–9, 2017.

Z. Li, A. Yang, H. Lv, L. Feng, and W. Song, “Fusion of visible light indoor positioning and inertial navigation based on particle filter,” IEEE Photon. J., vol. 9, no. 5, pp. 1–13, 2017.

2016 (2)

C. Cadena, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1309–1332, 2016.

C. Hsu, “Visible light positioning and lighting based on identity positioning and RF carrier allocation technique using a solar cell receiver,” IEEE Photon. J., vol. 8, no. 4, pp. 1–7, 2016.

2013 (1)

J. Armstrong, Y. A. Sekercioglu, and A. Neild, “Visible light positioning: A roadmap for international standardization,” IEEE Commun. Mag., vol. 51, no. 12, pp. 68–73, 2013.

2007 (1)

G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE Trans. Robot., vol. 23, no. 1, pp. 34–46, 2007.

2002 (1)

M. Montemerlo, “FastSLAM: A factored solution to the simultaneous localization and mapping problem,” Aaai/Iaai, 2002, Art. no. .

Amsters, R.

R. Amsters, “Visible light positioning using Bayesian filters,” J. Lightw. Technol., vol. 38, no. 21, pp. 5925–5936, 2020.

An, F.

F. An, “A tilt visible light positioning system based on double LEDs and angle sensors,” Electron., vol. 10, no. 16, 2021, Art. no. .

Armstrong, J.

J. Armstrong, Y. A. Sekercioglu, and A. Neild, “Visible light positioning: A roadmap for international standardization,” IEEE Commun. Mag., vol. 51, no. 12, pp. 68–73, 2013.

Berger, E.

E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The office marathon: Robust navigation in an indoor office environment,” in Proc. IEEE Int. Conf. Robot. Automat., 2010, pp. 300–307.

Burgard, W.

G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE Trans. Robot., vol. 23, no. 1, pp. 34–46, 2007.

G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling,” in Proc. IEEE Int. Conf. Robot. Automat., 2005, pp. 2432–2437.

T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard, “Monocular camera localization in 3D lidar maps,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 1926–1931.

Cadena, C.

C. Cadena, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1309–1332, 2016.

Cai, Y.

Y. Cai, W. Guan, Y. Wu, C. Xie, Y. Chen, and L. Fang, “Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization,” IEEE Photon. J., vol. 9, no. 6, pp. 1–20, 2017.

Caselitz, T.

T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard, “Monocular camera localization in 3D lidar maps,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 1926–1931.

Chan, S.

S. Chan, P. Wu, and L. Fu, “Robust 2D indoor localization through laser SLAM and visual SLAM fusion,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2018, pp. 1263–1268.

Chen, B.

B. Chen, “Performance comparison and analysis on different optimization models for high-precision three-dimensional visible light positioning,” Opt. Eng., vol. 57, no. 12, 2018, Art. no. .

Chen, S.

S. Chen and W. Guan, “High accuracy VLP based on image sensor using error calibration method,” 2020, arXiv:2010.00529.

Chen, X.

W. Guan, X. Chen, M. Huang, Z. Liu, Y. Wu, and Y. Chen, “High-speed robust dynamic positioning and tracking method based on visual visible light communication using optical flow detection and Bayesian forecast,” IEEE Photon. J., vol. 10, no. 3, pp. 1–22, 2018.

Chen, Y.

W. Guan, X. Chen, M. Huang, Z. Liu, Y. Wu, and Y. Chen, “High-speed robust dynamic positioning and tracking method based on visual visible light communication using optical flow detection and Bayesian forecast,” IEEE Photon. J., vol. 10, no. 3, pp. 1–22, 2018.

Y. Cai, W. Guan, Y. Wu, C. Xie, Y. Chen, and L. Fang, “Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization,” IEEE Photon. J., vol. 9, no. 6, pp. 1–20, 2017.

H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3D lidar inertial odometry and mapping,” in Proc. Int. Conf. Robot. Automat., 2019, pp. 3144–3150.

Cheng, H.

H. Cheng, C. Xiao, Y. Ji, J. Ni, and T. Wang, “A single LED visible light positioning system based on geometric features and CMOS camera,” IEEE Photon. Technol. Lett., vol. 32, no. 17, pp. 1097–1100, 2020.

Chuang, Y.

Y. Chuang, “Visible light communication and positioning using positioning cells and machine learning algorithms,” Opt. Exp., vol. 27, no. 11, pp. 16377–16383, 2019.

El Hamzaoui, O.

B. Steux and O. El Hamzaoui, “tinySLAM: A slam algorithm in less than 200 lines C-language program,” in Proc. 11th Int. Conf. Control Automat. Robot. Vis., 2010, pp. 1975–1979.

Fang, J.

J. Fang, “High-speed indoor navigation system based on visible light and mobile phone,” IEEE Photon. J., vol. 9, no. 2, pp. 1–11, 2017.

Fang, L.

Y. Cai, W. Guan, Y. Wu, C. Xie, Y. Chen, and L. Fang, “Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization,” IEEE Photon. J., vol. 9, no. 6, pp. 1–20, 2017.

Feng, L.

Z. Li, A. Yang, H. Lv, L. Feng, and W. Song, “Fusion of visible light indoor positioning and inertial navigation based on particle filter,” IEEE Photon. J., vol. 9, no. 5, pp. 1–13, 2017.

Foote, T.

E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The office marathon: Robust navigation in an indoor office environment,” in Proc. IEEE Int. Conf. Robot. Automat., 2010, pp. 300–307.

Fu, L.

S. Chan, P. Wu, and L. Fu, “Robust 2D indoor localization through laser SLAM and visual SLAM fusion,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2018, pp. 1263–1268.

Gerkey, B.

E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The office marathon: Robust navigation in an indoor office environment,” in Proc. IEEE Int. Conf. Robot. Automat., 2010, pp. 300–307.

Grisetti, G.

G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE Trans. Robot., vol. 23, no. 1, pp. 34–46, 2007.

Grisettiyz, G.

G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling,” in Proc. IEEE Int. Conf. Robot. Automat., 2005, pp. 2432–2437.

Guan, W.

W. Guan, “Robust robotic localization using visible light positioning and inertial fusion,” IEEE Sensors J., early access, 2021. doi: .
[Crossref]

W. Guan, B. Hussain, and P. Yue, “Technology report: Robotic localization and navigation system for visible light positioning and SLAM,” 2021, arXiv: 2104.14755.

W. Guan, “High-accuracy robot indoor localization scheme based on robot operating system using visible light positioning,” IEEE Photon. J., vol. 12, no. 2, pp. 1–16, 2020.

S. Chen and W. Guan, “High accuracy VLP based on image sensor using error calibration method,” 2020, arXiv:2010.00529.

W. Guan, “High-precision indoor positioning algorithm based on visible light communication using complementary metal–oxide–semiconductor image sensor,” Opt. Eng., vol. 58, no. 2, 2019, Art. no. .

W. Guan, “High precision indoor visible light positioning algorithm based on double LEDs using CMOS image sensor,” Appl. Sci., vol. 9, no. 6, 2019, Art. no. .

W. Guan, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun., vol. 410, pp. 531–551, 2018.

W. Guan, X. Chen, M. Huang, Z. Liu, Y. Wu, and Y. Chen, “High-speed robust dynamic positioning and tracking method based on visual visible light communication using optical flow detection and Bayesian forecast,” IEEE Photon. J., vol. 10, no. 3, pp. 1–22, 2018.

Y. Cai, W. Guan, Y. Wu, C. Xie, Y. Chen, and L. Fang, “Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization,” IEEE Photon. J., vol. 9, no. 6, pp. 1–20, 2017.

Z. Zhou, S. Wen, and W. Guan, “RSE-based optical camera communication in underwater scenery with bubble degradation,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2021.

W. Guan, S. Wen, H. Zhang, and L. Liu, “A novel three-dimensional indoor localization algorithm based on visual visible light communication using single LED,” in Proc. IEEE Int. Conf. Automat., Electron. Elect. Eng., 2018, pp. 202–208.

Hao, J.

Y. Yang, J. Hao, and J. Luo, “CeilingTalk: Lightweight indoor broadcast through LED-camera communication,” IEEE Trans. Mobile Comput., vol. 16, no. 12, pp. 3308–3319, 2017.

Harati, A.

V. Nguyen, A. Harati, and R. Siegwart, “A lightweight SLAM algorithm using orthogonal planes for indoor mobile robotics,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2007, pp. 658–663.

He, J.

J. He, “Efficient sampling scheme based on length estimation for optical camera communication,” IEEE Photon. Technol. Lett., vol. 31, no. 11, pp. 841–844, 2019.

Hess, W.

W. Hess, “Real-time loop closure in 2D LIDAR SLAM,” in Proc. IEEE Int. Conf. Robot. Automat., 2016, pp. 1271–1278.

Hong, C.

C. Hong, “Angle-of-arrival (AOA) visible light positioning (VLP) system using solar cells with third-order regression and ridge regression algorithms,” IEEE Photon. J., vol. 12, no. 3, pp. 1–5, 2020.

C. Hong, “Visible light positioning (VLP) system using low-cost organic photovoltaic cell (OPVC) for low illumination environments,” Opt. Exp., vol. 28, no. 18, pp. 26137–26142, 2020.

Hsu, C.

C. Hsu, “Visible light positioning and lighting based on identity positioning and RF carrier allocation technique using a solar cell receiver,” IEEE Photon. J., vol. 8, no. 4, pp. 1–7, 2016.

Hu, P.

P. Hu, “High speed LED-to-Camera communication using color shift keying with flicker mitigation,” IEEE Trans. Mobile Comput., vol. 19, no. 7, pp. 1603–1617, Jul 2019.

Huang, H.

Huang, L.

Huang, M.

W. Guan, X. Chen, M. Huang, Z. Liu, Y. Wu, and Y. Chen, “High-speed robust dynamic positioning and tracking method based on visual visible light communication using optical flow detection and Bayesian forecast,” IEEE Photon. J., vol. 10, no. 3, pp. 1–22, 2018.

Huang, N.

N. Huang, “Design and demonstration of robust visible light positioning based on received signal strength,” J. Lightw. Technol., vol. 38, no. 20, pp. 5695–5707, 2020.

Hussain, B.

W. Guan, B. Hussain, and P. Yue, “Technology report: Robotic localization and navigation system for visible light positioning and SLAM,” 2021, arXiv: 2104.14755.

Ji, Y.

H. Cheng, C. Xiao, Y. Ji, J. Ni, and T. Wang, “A single LED visible light positioning system based on geometric features and CMOS camera,” IEEE Photon. Technol. Lett., vol. 32, no. 17, pp. 1097–1100, 2020.

Kemao, Q.

R. Zhang, W. Zhong, Q. Kemao, and S. Zhang, “A single LED positioning system based on circle projection,” IEEE Photon. J., vol. 9, no. 4, pp. 1–9, 2017.

Kohlbrecher, S.

S. Kohlbrecher, “Hector open source modules for autonomous mapping and navigation with rescue robots,” in Robot Soccer World Cup, Springer, Berlin, Heidelberg, 2013, pp. 624–631.

Konolige, K.

E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The office marathon: Robust navigation in an indoor office environment,” in Proc. IEEE Int. Conf. Robot. Automat., 2010, pp. 300–307.

Krinkin, K.

K. Krinkin, “Evaluation of modern laser based indoor slam algorithms,” in Proc. 22nd Conf. Open Innovations Assoc. (FRUCT), 2018, pp. 101–106.

Kuo, Y.

Y. Kuo, “Luxapose: Indoor positioning with mobile phones and visible light,” in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw., 2014, pp. 447–458.

Lee, H.

H. Lee, “Rollinglight: Enabling line-of-sight light-to-camera communications,” in Proc. 13th Annu. Int. Conf. Mobile Syst., Appl., Serv., 2015, pp. 167–180.

Li, H.

H. Li, “A fast and high-accuracy real-time visible light positioning system based on single LED lamp with a beacon,” IEEE Photon. J., vol. 12, no. 6, pp. 1–12, Dec. 2020.

Li, Z.

Z. Li, A. Yang, H. Lv, L. Feng, and W. Song, “Fusion of visible light indoor positioning and inertial navigation based on particle filter,” IEEE Photon. J., vol. 9, no. 5, pp. 1–13, 2017.

Liang, Q.

Q. Liang and M. Liu, “A tightly coupled VLC-inertial localization system by EKF,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 3129–3136, 2020.

Q. Liang, J. Lin, and M. Liu, “Towards robust visible light positioning under LED shortage by visual-inertial fusion,” in Proc. Int. Conf. Indoor Positioning Indoor Navigat., 2019, pp. 1–8.

Lin, J.

Q. Liang, J. Lin, and M. Liu, “Towards robust visible light positioning under LED shortage by visual-inertial fusion,” in Proc. Int. Conf. Indoor Positioning Indoor Navigat., 2019, pp. 1–8.

Lin, P.

P. Lin, “Real-time visible light positioning supporting fast moving speed,” Opt. Exp., vol. 28, no. 10, pp. 14503–14510, 2020.

Liu, L.

W. Guan, S. Wen, H. Zhang, and L. Liu, “A novel three-dimensional indoor localization algorithm based on visual visible light communication using single LED,” in Proc. IEEE Int. Conf. Automat., Electron. Elect. Eng., 2018, pp. 202–208.

Liu, M.

Q. Liang and M. Liu, “A tightly coupled VLC-inertial localization system by EKF,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 3129–3136, 2020.

Q. Liang, J. Lin, and M. Liu, “Towards robust visible light positioning under LED shortage by visual-inertial fusion,” in Proc. Int. Conf. Indoor Positioning Indoor Navigat., 2019, pp. 1–8.

H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3D lidar inertial odometry and mapping,” in Proc. Int. Conf. Robot. Automat., 2019, pp. 3144–3150.

Liu, Z.

W. Guan, X. Chen, M. Huang, Z. Liu, Y. Wu, and Y. Chen, “High-speed robust dynamic positioning and tracking method based on visual visible light communication using optical flow detection and Bayesian forecast,” IEEE Photon. J., vol. 10, no. 3, pp. 1–22, 2018.

Luo, J.

Y. Yang, J. Hao, and J. Luo, “CeilingTalk: Lightweight indoor broadcast through LED-camera communication,” IEEE Trans. Mobile Comput., vol. 16, no. 12, pp. 3308–3319, 2017.

Lv, H.

Z. Li, A. Yang, H. Lv, L. Feng, and W. Song, “Fusion of visible light indoor positioning and inertial navigation based on particle filter,” IEEE Photon. J., vol. 9, no. 5, pp. 1–13, 2017.

Marder-Eppstein, E.

E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The office marathon: Robust navigation in an indoor office environment,” in Proc. IEEE Int. Conf. Robot. Automat., 2010, pp. 300–307.

Montemerlo, M.

M. Montemerlo, “FastSLAM: A factored solution to the simultaneous localization and mapping problem,” Aaai/Iaai, 2002, Art. no. .

Neild, A.

J. Armstrong, Y. A. Sekercioglu, and A. Neild, “Visible light positioning: A roadmap for international standardization,” IEEE Commun. Mag., vol. 51, no. 12, pp. 68–73, 2013.

Nguyen, V.

V. Nguyen, A. Harati, and R. Siegwart, “A lightweight SLAM algorithm using orthogonal planes for indoor mobile robotics,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2007, pp. 658–663.

Ni, J.

H. Cheng, C. Xiao, Y. Ji, J. Ni, and T. Wang, “A single LED visible light positioning system based on geometric features and CMOS camera,” IEEE Photon. Technol. Lett., vol. 32, no. 17, pp. 1097–1100, 2020.

Portugal, D.

J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2D SLAM techniques available in robot operating system,” in Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot., 2013, pp. 1–6.

Qv, R.

R. Qv, “A high efficient code for visible light positioning system based on image sensor,” Access, vol. 7, pp. 77762–77770, 2019. [Online]. Available: https://search.datacite.org/works/10.1109/access.2019.2921601, doi: .
[Crossref]

Rocha, R. P.

J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2D SLAM techniques available in robot operating system,” in Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot., 2013, pp. 1–6.

Ruhnke, M.

T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard, “Monocular camera localization in 3D lidar maps,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 1926–1931.

Santos, J. M.

J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2D SLAM techniques available in robot operating system,” in Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot., 2013, pp. 1–6.

Sekercioglu, Y. A.

J. Armstrong, Y. A. Sekercioglu, and A. Neild, “Visible light positioning: A roadmap for international standardization,” IEEE Commun. Mag., vol. 51, no. 12, pp. 68–73, 2013.

Siegwart, R.

V. Nguyen, A. Harati, and R. Siegwart, “A lightweight SLAM algorithm using orthogonal planes for indoor mobile robotics,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2007, pp. 658–663.

Song, H.

H. Song, “Robust LED region-of-interest tracking for visible light positioning with low complexity,” Opt. Eng., vol. 60, no. 5, 2021, Art. no. .

Song, S.

S. Song, “Employing DIALux to relieve machine-learning training data collection when designing indoor positioning systems,” Opt. Exp., vol. 29, no. 11, pp. 16887–16892, 2021.

Song, W.

Z. Li, A. Yang, H. Lv, L. Feng, and W. Song, “Fusion of visible light indoor positioning and inertial navigation based on particle filter,” IEEE Photon. J., vol. 9, no. 5, pp. 1–13, 2017.

Stachniss, C.

G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE Trans. Robot., vol. 23, no. 1, pp. 34–46, 2007.

G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling,” in Proc. IEEE Int. Conf. Robot. Automat., 2005, pp. 2432–2437.

Steder, B.

T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard, “Monocular camera localization in 3D lidar maps,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 1926–1931.

Steux, B.

B. Steux and O. El Hamzaoui, “tinySLAM: A slam algorithm in less than 200 lines C-language program,” in Proc. 11th Int. Conf. Control Automat. Robot. Vis., 2010, pp. 1975–1979.

Wang, T.

H. Cheng, C. Xiao, Y. Ji, J. Ni, and T. Wang, “A single LED visible light positioning system based on geometric features and CMOS camera,” IEEE Photon. Technol. Lett., vol. 32, no. 17, pp. 1097–1100, 2020.

Wen, S.

Z. Zhou, S. Wen, and W. Guan, “RSE-based optical camera communication in underwater scenery with bubble degradation,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2021.

W. Guan, S. Wen, H. Zhang, and L. Liu, “A novel three-dimensional indoor localization algorithm based on visual visible light communication using single LED,” in Proc. IEEE Int. Conf. Automat., Electron. Elect. Eng., 2018, pp. 202–208.

Wu, P.

S. Chan, P. Wu, and L. Fu, “Robust 2D indoor localization through laser SLAM and visual SLAM fusion,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2018, pp. 1263–1268.

Wu, Y.

Y. Wu, “Received-signal-strength (RSS) based 3D visible-light-positioning (VLP) system using kernel ridge regression machine learning algorithm with sigmoid function data preprocessing method,” IEEE Access, vol. 8, pp. 214269–214281, 2020.

W. Guan, X. Chen, M. Huang, Z. Liu, Y. Wu, and Y. Chen, “High-speed robust dynamic positioning and tracking method based on visual visible light communication using optical flow detection and Bayesian forecast,” IEEE Photon. J., vol. 10, no. 3, pp. 1–22, 2018.

Y. Cai, W. Guan, Y. Wu, C. Xie, Y. Chen, and L. Fang, “Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization,” IEEE Photon. J., vol. 9, no. 6, pp. 1–20, 2017.

Xiao, C.

H. Cheng, C. Xiao, Y. Ji, J. Ni, and T. Wang, “A single LED visible light positioning system based on geometric features and CMOS camera,” IEEE Photon. Technol. Lett., vol. 32, no. 17, pp. 1097–1100, 2020.

Xie, C.

Y. Cai, W. Guan, Y. Wu, C. Xie, Y. Chen, and L. Fang, “Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization,” IEEE Photon. J., vol. 9, no. 6, pp. 1–20, 2017.

Yan, Z.

Z. Yan, “Multi-robot cooperative localization based on visible light positioning and odometer,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–8, 2021, Art. no. .

Yang, A.

Z. Li, A. Yang, H. Lv, L. Feng, and W. Song, “Fusion of visible light indoor positioning and inertial navigation based on particle filter,” IEEE Photon. J., vol. 9, no. 5, pp. 1–13, 2017.

Yang, Y.

Y. Yang, J. Hao, and J. Luo, “CeilingTalk: Lightweight indoor broadcast through LED-camera communication,” IEEE Trans. Mobile Comput., vol. 16, no. 12, pp. 3308–3319, 2017.

Ye, H.

H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3D lidar inertial odometry and mapping,” in Proc. Int. Conf. Robot. Automat., 2019, pp. 3144–3150.

Yue, P.

W. Guan, B. Hussain, and P. Yue, “Technology report: Robotic localization and navigation system for visible light positioning and SLAM,” 2021, arXiv: 2104.14755.

Zhang, H.

W. Guan, S. Wen, H. Zhang, and L. Liu, “A novel three-dimensional indoor localization algorithm based on visual visible light communication using single LED,” in Proc. IEEE Int. Conf. Automat., Electron. Elect. Eng., 2018, pp. 202–208.

Zhang, R.

R. Zhang, W. Zhong, Q. Kemao, and S. Zhang, “A single LED positioning system based on circle projection,” IEEE Photon. J., vol. 9, no. 4, pp. 1–9, 2017.

Zhang, S.

R. Zhang, W. Zhong, Q. Kemao, and S. Zhang, “A single LED positioning system based on circle projection,” IEEE Photon. J., vol. 9, no. 4, pp. 1–9, 2017.

Zhong, W.

R. Zhang, W. Zhong, Q. Kemao, and S. Zhang, “A single LED positioning system based on circle projection,” IEEE Photon. J., vol. 9, no. 4, pp. 1–9, 2017.

Zhou, Z.

Z. Zhou, “Performance enhancement scheme for RSE-based underwater optical camera communication using de-bubble algorithm and binary fringe correction,” Electronics, vol. 10, no. 8, 2021, Art. no. .

Z. Zhou, S. Wen, and W. Guan, “RSE-based optical camera communication in underwater scenery with bubble degradation,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2021.

Aaai/Iaai (1)

M. Montemerlo, “FastSLAM: A factored solution to the simultaneous localization and mapping problem,” Aaai/Iaai, 2002, Art. no. .

Access (1)

R. Qv, “A high efficient code for visible light positioning system based on image sensor,” Access, vol. 7, pp. 77762–77770, 2019. [Online]. Available: https://search.datacite.org/works/10.1109/access.2019.2921601, doi: .
[Crossref]

Appl. Opt. (2)

Appl. Sci. (1)

W. Guan, “High precision indoor visible light positioning algorithm based on double LEDs using CMOS image sensor,” Appl. Sci., vol. 9, no. 6, 2019, Art. no. .

Electron. (1)

F. An, “A tilt visible light positioning system based on double LEDs and angle sensors,” Electron., vol. 10, no. 16, 2021, Art. no. .

Electronics (1)

Z. Zhou, “Performance enhancement scheme for RSE-based underwater optical camera communication using de-bubble algorithm and binary fringe correction,” Electronics, vol. 10, no. 8, 2021, Art. no. .

IEEE Access (1)

Y. Wu, “Received-signal-strength (RSS) based 3D visible-light-positioning (VLP) system using kernel ridge regression machine learning algorithm with sigmoid function data preprocessing method,” IEEE Access, vol. 8, pp. 214269–214281, 2020.

IEEE Commun. Mag. (1)

J. Armstrong, Y. A. Sekercioglu, and A. Neild, “Visible light positioning: A roadmap for international standardization,” IEEE Commun. Mag., vol. 51, no. 12, pp. 68–73, 2013.

IEEE Photon. J. (8)

Y. Cai, W. Guan, Y. Wu, C. Xie, Y. Chen, and L. Fang, “Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization,” IEEE Photon. J., vol. 9, no. 6, pp. 1–20, 2017.

J. Fang, “High-speed indoor navigation system based on visible light and mobile phone,” IEEE Photon. J., vol. 9, no. 2, pp. 1–11, 2017.

W. Guan, “High-accuracy robot indoor localization scheme based on robot operating system using visible light positioning,” IEEE Photon. J., vol. 12, no. 2, pp. 1–16, 2020.

C. Hsu, “Visible light positioning and lighting based on identity positioning and RF carrier allocation technique using a solar cell receiver,” IEEE Photon. J., vol. 8, no. 4, pp. 1–7, 2016.

C. Hong, “Angle-of-arrival (AOA) visible light positioning (VLP) system using solar cells with third-order regression and ridge regression algorithms,” IEEE Photon. J., vol. 12, no. 3, pp. 1–5, 2020.

R. Zhang, W. Zhong, Q. Kemao, and S. Zhang, “A single LED positioning system based on circle projection,” IEEE Photon. J., vol. 9, no. 4, pp. 1–9, 2017.

Z. Li, A. Yang, H. Lv, L. Feng, and W. Song, “Fusion of visible light indoor positioning and inertial navigation based on particle filter,” IEEE Photon. J., vol. 9, no. 5, pp. 1–13, 2017.

W. Guan, X. Chen, M. Huang, Z. Liu, Y. Wu, and Y. Chen, “High-speed robust dynamic positioning and tracking method based on visual visible light communication using optical flow detection and Bayesian forecast,” IEEE Photon. J., vol. 10, no. 3, pp. 1–22, 2018.

IEEE Photon. Technol. Lett. (2)

H. Cheng, C. Xiao, Y. Ji, J. Ni, and T. Wang, “A single LED visible light positioning system based on geometric features and CMOS camera,” IEEE Photon. Technol. Lett., vol. 32, no. 17, pp. 1097–1100, 2020.

J. He, “Efficient sampling scheme based on length estimation for optical camera communication,” IEEE Photon. Technol. Lett., vol. 31, no. 11, pp. 841–844, 2019.

IEEE Robot. Automat. Lett. (1)

Q. Liang and M. Liu, “A tightly coupled VLC-inertial localization system by EKF,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 3129–3136, 2020.

IEEE Sensors J. (1)

W. Guan, “Robust robotic localization using visible light positioning and inertial fusion,” IEEE Sensors J., early access, 2021. doi: .
[Crossref]

IEEE Trans. Instrum. Meas. (1)

Z. Yan, “Multi-robot cooperative localization based on visible light positioning and odometer,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–8, 2021, Art. no. .

IEEE Trans. Mobile Comput. (2)

Y. Yang, J. Hao, and J. Luo, “CeilingTalk: Lightweight indoor broadcast through LED-camera communication,” IEEE Trans. Mobile Comput., vol. 16, no. 12, pp. 3308–3319, 2017.

P. Hu, “High speed LED-to-Camera communication using color shift keying with flicker mitigation,” IEEE Trans. Mobile Comput., vol. 19, no. 7, pp. 1603–1617, Jul 2019.

IEEE Trans. Robot. (2)

C. Cadena, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1309–1332, 2016.

G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE Trans. Robot., vol. 23, no. 1, pp. 34–46, 2007.

J. Lightw. Technol. (2)

R. Amsters, “Visible light positioning using Bayesian filters,” J. Lightw. Technol., vol. 38, no. 21, pp. 5925–5936, 2020.

N. Huang, “Design and demonstration of robust visible light positioning based on received signal strength,” J. Lightw. Technol., vol. 38, no. 20, pp. 5695–5707, 2020.

Opt. Commun. (1)

W. Guan, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun., vol. 410, pp. 531–551, 2018.

Opt. Eng. (3)

B. Chen, “Performance comparison and analysis on different optimization models for high-precision three-dimensional visible light positioning,” Opt. Eng., vol. 57, no. 12, 2018, Art. no. .

H. Song, “Robust LED region-of-interest tracking for visible light positioning with low complexity,” Opt. Eng., vol. 60, no. 5, 2021, Art. no. .

W. Guan, “High-precision indoor positioning algorithm based on visible light communication using complementary metal–oxide–semiconductor image sensor,” Opt. Eng., vol. 58, no. 2, 2019, Art. no. .

Opt. Exp. (4)

P. Lin, “Real-time visible light positioning supporting fast moving speed,” Opt. Exp., vol. 28, no. 10, pp. 14503–14510, 2020.

S. Song, “Employing DIALux to relieve machine-learning training data collection when designing indoor positioning systems,” Opt. Exp., vol. 29, no. 11, pp. 16887–16892, 2021.

Y. Chuang, “Visible light communication and positioning using positioning cells and machine learning algorithms,” Opt. Exp., vol. 27, no. 11, pp. 16377–16383, 2019.

C. Hong, “Visible light positioning (VLP) system using low-cost organic photovoltaic cell (OPVC) for low illumination environments,” Opt. Exp., vol. 28, no. 18, pp. 26137–26142, 2020.

Other (19)

H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3D lidar inertial odometry and mapping,” in Proc. Int. Conf. Robot. Automat., 2019, pp. 3144–3150.

W. Hess, “Real-time loop closure in 2D LIDAR SLAM,” in Proc. IEEE Int. Conf. Robot. Automat., 2016, pp. 1271–1278.

B. Steux and O. El Hamzaoui, “tinySLAM: A slam algorithm in less than 200 lines C-language program,” in Proc. 11th Int. Conf. Control Automat. Robot. Vis., 2010, pp. 1975–1979.

Z. Zhou, S. Wen, and W. Guan, “RSE-based optical camera communication in underwater scenery with bubble degradation,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2021.

S. Chen and W. Guan, “High accuracy VLP based on image sensor using error calibration method,” 2020, arXiv:2010.00529.

H. Lee, “Rollinglight: Enabling line-of-sight light-to-camera communications,” in Proc. 13th Annu. Int. Conf. Mobile Syst., Appl., Serv., 2015, pp. 167–180.

V. Nguyen, A. Harati, and R. Siegwart, “A lightweight SLAM algorithm using orthogonal planes for indoor mobile robotics,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2007, pp. 658–663.

Q. Liang, J. Lin, and M. Liu, “Towards robust visible light positioning under LED shortage by visual-inertial fusion,” in Proc. Int. Conf. Indoor Positioning Indoor Navigat., 2019, pp. 1–8.

Y. Kuo, “Luxapose: Indoor positioning with mobile phones and visible light,” in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw., 2014, pp. 447–458.

W. Guan, S. Wen, H. Zhang, and L. Liu, “A novel three-dimensional indoor localization algorithm based on visual visible light communication using single LED,” in Proc. IEEE Int. Conf. Automat., Electron. Elect. Eng., 2018, pp. 202–208.

H. Li, “A fast and high-accuracy real-time visible light positioning system based on single LED lamp with a beacon,” IEEE Photon. J., vol. 12, no. 6, pp. 1–12, Dec. 2020.

S. Kohlbrecher, “Hector open source modules for autonomous mapping and navigation with rescue robots,” in Robot Soccer World Cup, Springer, Berlin, Heidelberg, 2013, pp. 624–631.

J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2D SLAM techniques available in robot operating system,” in Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot., 2013, pp. 1–6.

K. Krinkin, “Evaluation of modern laser based indoor slam algorithms,” in Proc. 22nd Conf. Open Innovations Assoc. (FRUCT), 2018, pp. 101–106.

W. Guan, B. Hussain, and P. Yue, “Technology report: Robotic localization and navigation system for visible light positioning and SLAM,” 2021, arXiv: 2104.14755.

E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The office marathon: Robust navigation in an indoor office environment,” in Proc. IEEE Int. Conf. Robot. Automat., 2010, pp. 300–307.

G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling,” in Proc. IEEE Int. Conf. Robot. Automat., 2005, pp. 2432–2437.

T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard, “Monocular camera localization in 3D lidar maps,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 1926–1931.

S. Chan, P. Wu, and L. Fu, “Robust 2D indoor localization through laser SLAM and visual SLAM fusion,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2018, pp. 1263–1268.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.