Abstract

Integrating photonics with CMOS electronics in silicon is essential to enable chip-scale, electronic-photonic systems that will revolutionize classical and quantum communication and computing systems. However, the lack of an on-silicon isolator, capable of blocking unwanted back reflections and ensuring the stable operation of the laser, precluded many previous demonstrations from providing single-chip solutions. For most optical systems employing a laser, magneto-optic isolators have been indispensable, but such isolators are incompatible with silicon. To stabilize on-chip lasers, reflections-cancellation circuits were proposed as a way to reduce the reflections going back to the laser. Yet, a stable laser against time-varying back reflections was never demonstrated. Here we demonstrate a stable quantum well-distributed feedback (QWDFB) laser against slowly time-varying reflections using a reflections-cancellation circuit (RCC) on a foundry-produced, silicon-photonic (SiP) chip. The optical spectrum and the relative intensity noise (RIN) of the laser when the RCC was running is comparable to when an isolator was used. By accurately locking the laser in a stable optical feedback regime, the RCC further enhances the QWDFB laser performance by reducing its linewidth by a factor of 100, down to 3 kHz. Both results are enabled using novel techniques in the design, calibration, tuning, and control of the proposed SiP RCC. The optical insertion loss of the RCC is less than 1.5 dB for reflections smaller than −20 dB and can yield isolation ranges of up to 64 dB. Our device paves the way towards the mass production of fully integrated, low-cost electronic-photonic silicon chips without attaching magneto-optic isolators between the laser and the SiP chip.

PDF Article

References

  • View by:

  1. C. Sun “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, no. 7583, pp. 534–538, 2015.
  2. A. H. Atabaki “Integrating photonics with silicon Nanoelectronics for the next generation of systems on a chip,” Nature, vol. 556, no. 7701, pp. 349–354, 2018.
  3. G. Zhang “An integrated silicon photonic chip platform for continuous-variable quantum key distribution,” Nature Photon., vol. 13, no. 12, pp. 839–842, 2019.
  4. X. Qiang “Large-scale silicon quantum photonics implementing arbitrary two-Qbit processing,” Nature Photon., vol. 12, no. 9, pp. 534–539, 2018.
  5. D. Jalas “What is -and what is not- an optical isolator,” Nature Photon., vol. 7, no. 8, pp. 579–582, 2013.
  6. R. Tkach and A. Chraplyvy, “Regimes of feedback effects in 1.5-$\mu$m distributed feedback lasers,” J. Lightw. Technol., vol. 4, no. 11, pp. 1655–1661, Nov. 1986.
  7. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron., vol. 24, no. 7, pp. 1242–1247,  1988.
  8. L. Bi, “On-chip optical isolation in Monolithically integrated non-reciprocal optical resonators,” Nature Photon., vol. 5, no. 12, p. 758, 2011.
  9. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11 740–11 745, 2011.
  10. D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 271–278, Nov./Dec. 2016.
  11. T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon Photonics using wafer-bonded magneto-optical garnet materials,” MRS Bull., vol. 43, no. 6, pp. 419–424, 2018.
  12. M. Krause, H. Renner, and E. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal raman amplification,” Electron. Lett., vol. 44, no. 11, pp. 691–693, 2008.
  13. L. Fan, “An all-silicon passive optical diode,” Science, vol. 335, no. 6067, pp. 447–450, 2012.
  14. Z. Wu, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett., vol. 107, no. 22, 2015, Art. no. .
  15. C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, no. 1, pp. 1–6, 2015.
  16. K. Wang, “Four-wave-mixing-based silicon integrated optical isolator with dynamic non-reciprocity,” IEEE Photon. Technol. Lett., vol. 28, no. 16, pp. 1739–1742,  2016.
  17. S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, no. 1, pp. 1–6, 2016.
  18. A. Li and W. Bogaerts, “Reconfigurable nonlinear nonreciprocal transmission in a silicon photonic integrated circuit,” Optica, vol. 7, no. 1, pp. 7–14, 2020.
  19. K. Y. Yang “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nature Photon., vol. 14, no. 6 pp. 369–374, 2020.
  20. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nature Photon., vol. 3, no. 2, pp. 91–94, 2009.
  21. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no.  33901.
  22. C. Doerr, L. Chen, and D. Vermeulen, “Silicon Photonics broadband modulation-based isolator,” Opt. Exp., vol. 22, no. 4, pp. 4493–4498, 2014.
  23. P. Dong, “Travelling-wave Mach-Zehnder modulators functioning as optical isolators,” Opt. Exp., vol. 23, no. 8, pp. 10498–10505, 2015.
  24. D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nature Photon., vol. 12, no. 2, pp. 91–97, 2018.
  25. Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nature Photon., vol. 9, no. 6, pp. 388–392, 2015.
  26. N. Chinone, K. Aiki, and R. Ito, “Stabilization of semiconductor laser outputs by a mirror close to a laser facet,” Appl. Phys. Lett., vol. 33, no. 12, pp. 990–992, 1978.
  27. P. Alipour, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Thermally reconfigurable device for adaptive reflection suppression on a silicon-on-insulator platform,” Opt. Lett., vol. 39, no. 5, pp. 1141–1144, 2014.
  28. T. W. Baehr-Jones, M. A. Streshinsky, Y. Liu, M. J. Hochberg, R. Ding, and A. Tager, “Controlling back scattering in optical waveguide systems,” U.S. Patent 10133014, 20, 2018.
  29. J. Bovington, “Optical device with reduced back reflection,” U.S. Patent 10365432, Jul. 30, 2019.
  30. L. Tang, J. Li, S. Yang, H. Chen, and M. Chen, “A method for improving reflection tolerance of laser source in hybrid Photonic packaged micro-system,” IEEE Photon. Technol. Lett., vol. 33, no. 9, pp. 465–468,  2021.
  31. S. Shao, J. Li, Y. Wu, S. Yang, H. Chen, and M. Chen, “Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector,” Opt. Lett., vol. 46, no. 13, pp. 3251–3254, 2021.
  32. J. Hauck, “Stabilization and frequency control of a DFB laser with a tunable optical reflector integrated in a silicon photonics PIC,” J. Lightw. Technol., vol. 34, no. 23, pp. 5467–5473, 2016.
  33. H. Shoman, “Reconfigurable silicon photonic integrated circuits,” Ph.D. dissertation, Department of Electrical and Computer Engineering, Univ. British Columbia, Oct. 2020.
  34. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron., vol. QE-16, no. 3, pp. 347–355,  1980.
  35. N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron., vol. QE-22, no. 5, pp. 642–650,  1986.
  36. R. L. Burden and D. J. Faires, “Numerical analysis,” Brooks/Cole, 2011.
  37. K. I. Kallimani and M. O’mahony, “Relative intensity noise for laser diodes with arbitrary amounts of optical feedback,” IEEE J. Quantum Electron., vol. 34, no. 8, pp. 1438–1446,  1998.
  38. H. Packard, Lightwave Signal Analysers Measure Relative Intensity Noise. Palo Alto, CA, USA: Hewlett-Packard, 1991.
  39. H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2 × 2 adiabatic 3-dB coupler on silicon-on-insulator rib Waveguides,” in Proc. Photon. North Int. Soc. Opt. Photon., 2013, Art. no. .
  40. Y. Zhang, “A compact and low loss Y-junction for submicron silicon Waveguide,” Opt. Exp., vol. 21, no. 1, pp. 1310–1316, 2013.
  41. T.-Y. Liow, “Silicon modulators and germanium Photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 307–315, Jan./Feb. 2010.
  42. X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable Graphene-silicon Heterojunctions for Ultrasensitive Photodetection,” Nano Lett., vol. 13, no. 3, pp. 909–916, 2013.
  43. W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photon. J., vol. 3, no. 3, pp. 422–432,  2011.
  44. V. Mackowiak, J. Peupelmann, Y. Ma, and A. Gorges, “NEP-Noise equivalent power,” Thorlabs, Inc., Newton, NJ, USA, White Paper, 2015.
  45. K. Kikuchi and T. Okoshi, “Simple formula giving spectrum-narrowing ratio of semiconductor-laser output obtained by optical feedback,” Electron. Lett., vol. 18, no. 1, pp. 10–12, 1982.
  46. “Fab: Advanced micro foundry (AMF) silicon Photonics fabrication process,” Accessed: Apr. 07, 2020. [Online]. Available: https://www.cmc.ca/en/WhatWeOffer/Products/CMC-00200-03001.aspx
  47. Z. Lu, “Broadband silicon Photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Exp., vol. 23, no. 3, pp. 3795–3808, 2015.
  48. M. Ma, H. Shoman, K. Tang, S. Shekhar, N. A. Jaeger, and L. Chrostowski, “Automated control algorithms for silicon Photonic polarization receiver,” Opt. Exp., vol. 28, no. 2, pp. 1885–1896, 2020.
  49. H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon Photonic ring resonator circuits,” Optica, vol. 6, no. 1, pp. 84–91, 2019.
  50. R. Miles, A. Dandridge, A. Tveten, H. Taylor, and T. Giallorenzi, “Feedback-induced line broadening in CW channel-substrate planar laser diodes,” Appl. Phys. Lett., vol. 37, no. 11, pp. 990–992, 1980.
  51. D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron., vol. 21, no. 6, pp. 674–679,  1985.
  52. C. Zhang, P. Dulal, B. J. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using Seedlayer-free garnet,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.
  53. Y. Zhang “Monolithic integration of broadband optical isolators for polarization-diverse silicon Photonics,” Optica, vol. 6, no. 4, pp. 473–478, 2019.
  54. K. Saha, Y. Okawachi, O. Kuzucu, M. Menard, M. Lipson, and A. L. Gaeta, “Chip-Scale broadband optical isolation via Bragg scattering four-wave mixing,” in Proc. CLEO: QELS_Fundam. Sci. Opt. Soc. Amer., 2013, Art. no. QF 1D-2.
  55. D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372,  1991.
  56. K. Petermann, Laser Diode Modulation and Noise. Berlin, Germany: Springer, 2012.
  57. A. Mokhtar, L. MacEachern, and S. Mahmoud, “Isolator-free DFB laser diode operating in feedback regime V,” in Proc. Active Passive Opt. Compon. Commun. VI, vol. 6389, 2006, Art. no. .
  58. N. Schunk and K. Petermann, “Stability analysis for laser diodes with short external cavities,” IEEE Photon. Technol. Lett., vol. 1, no. 3, pp. 49–51,  1989.
  59. D. Huang, “Dynamically reconfigurable integrated optical circulators,” Optica, vol. 4, no. 1, pp. 23–30, 2017.
  60. A. Ahmed, D. ElmoznineY. LimA. MaRylyakov, and S. Shekhar, “A dual-polarization silicon-photonic coherent transmitter supporting 552 Gb/s/wavelength,” IEEE J. Solid-State Circuits, vol. 55, no. 9 pp. 2597–2608, Sep. 2020.
  61. M. H. Idjadi and F. Aflatouni, “Nanophotonic phase noise filter in silicon,” Nature Photon., vol. 14, no. 4, pp. 234–239, 2020.
  62. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos. Berlin, Germany: Springer, 2012.
  63. L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with Subcoherence delay times,” IEEE J. Quantum Electron., vol. QE-22, no. 11, pp. 2070–2074,  1986.

Adibi, A.

P. Alipour, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Thermally reconfigurable device for adaptive reflection suppression on a silicon-on-insulator platform,” Opt. Lett., vol. 39, no. 5, pp. 1141–1144, 2014.

Aflatouni, F.

M. H. Idjadi and F. Aflatouni, “Nanophotonic phase noise filter in silicon,” Nature Photon., vol. 14, no. 4, pp. 234–239, 2020.

Ahmed, A.

A. Ahmed, D. ElmoznineY. LimA. MaRylyakov, and S. Shekhar, “A dual-polarization silicon-photonic coherent transmitter supporting 552 Gb/s/wavelength,” IEEE J. Solid-State Circuits, vol. 55, no. 9 pp. 2597–2608, Sep. 2020.

Aiki, K.

N. Chinone, K. Aiki, and R. Ito, “Stabilization of semiconductor laser outputs by a mirror close to a laser facet,” Appl. Phys. Lett., vol. 33, no. 12, pp. 990–992, 1978.

Alipour, P.

P. Alipour, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Thermally reconfigurable device for adaptive reflection suppression on a silicon-on-insulator platform,” Opt. Lett., vol. 39, no. 5, pp. 1141–1144, 2014.

An, X.

X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable Graphene-silicon Heterojunctions for Ultrasensitive Photodetection,” Nano Lett., vol. 13, no. 3, pp. 909–916, 2013.

Atabaki, A. H.

P. Alipour, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Thermally reconfigurable device for adaptive reflection suppression on a silicon-on-insulator platform,” Opt. Lett., vol. 39, no. 5, pp. 1141–1144, 2014.

A. H. Atabaki “Integrating photonics with silicon Nanoelectronics for the next generation of systems on a chip,” Nature, vol. 556, no. 7701, pp. 349–354, 2018.

Baehr-Jones, T. W.

T. W. Baehr-Jones, M. A. Streshinsky, Y. Liu, M. J. Hochberg, R. Ding, and A. Tager, “Controlling back scattering in optical waveguide systems,” U.S. Patent 10133014, 20, 2018.

Baets, R.

T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon Photonics using wafer-bonded magneto-optical garnet materials,” MRS Bull., vol. 43, no. 6, pp. 419–424, 2018.

Bahl, G.

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nature Photon., vol. 12, no. 2, pp. 91–97, 2018.

Beausoleil, R. G.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372,  1991.

Bi, L.

L. Bi, “On-chip optical isolation in Monolithically integrated non-reciprocal optical resonators,” Nature Photon., vol. 5, no. 12, p. 758, 2011.

Boef, A. Den

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron., vol. 21, no. 6, pp. 674–679,  1985.

Bogaerts, W.

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photon. J., vol. 3, no. 3, pp. 422–432,  2011.

A. Li and W. Bogaerts, “Reconfigurable nonlinear nonreciprocal transmission in a silicon photonic integrated circuit,” Optica, vol. 7, no. 1, pp. 7–14, 2020.

Bovington, J.

J. Bovington, “Optical device with reduced back reflection,” U.S. Patent 10365432, Jul. 30, 2019.

Bowers, J. E.

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11 740–11 745, 2011.

T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon Photonics using wafer-bonded magneto-optical garnet materials,” MRS Bull., vol. 43, no. 6, pp. 419–424, 2018.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 271–278, Nov./Dec. 2016.

Brinkmeyer, E.

M. Krause, H. Renner, and E. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal raman amplification,” Electron. Lett., vol. 44, no. 11, pp. 691–693, 2008.

Burden, R. L.

R. L. Burden and D. J. Faires, “Numerical analysis,” Brooks/Cole, 2011.

Chen, H.

L. Tang, J. Li, S. Yang, H. Chen, and M. Chen, “A method for improving reflection tolerance of laser source in hybrid Photonic packaged micro-system,” IEEE Photon. Technol. Lett., vol. 33, no. 9, pp. 465–468,  2021.

S. Shao, J. Li, Y. Wu, S. Yang, H. Chen, and M. Chen, “Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector,” Opt. Lett., vol. 46, no. 13, pp. 3251–3254, 2021.

Chen, L.

C. Doerr, L. Chen, and D. Vermeulen, “Silicon Photonics broadband modulation-based isolator,” Opt. Exp., vol. 22, no. 4, pp. 4493–4498, 2014.

Chen, M.

S. Shao, J. Li, Y. Wu, S. Yang, H. Chen, and M. Chen, “Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector,” Opt. Lett., vol. 46, no. 13, pp. 3251–3254, 2021.

L. Tang, J. Li, S. Yang, H. Chen, and M. Chen, “A method for improving reflection tolerance of laser source in hybrid Photonic packaged micro-system,” IEEE Photon. Technol. Lett., vol. 33, no. 9, pp. 465–468,  2021.

Chinone, N.

N. Chinone, K. Aiki, and R. Ito, “Stabilization of semiconductor laser outputs by a mirror close to a laser facet,” Appl. Phys. Lett., vol. 33, no. 12, pp. 990–992, 1978.

Chraplyvy, A.

R. Tkach and A. Chraplyvy, “Regimes of feedback effects in 1.5-$\mu$m distributed feedback lasers,” J. Lightw. Technol., vol. 4, no. 11, pp. 1655–1661, Nov. 1986.

Chrostowski, L.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2 × 2 adiabatic 3-dB coupler on silicon-on-insulator rib Waveguides,” in Proc. Photon. North Int. Soc. Opt. Photon., 2013, Art. no. .

M. Ma, H. Shoman, K. Tang, S. Shekhar, N. A. Jaeger, and L. Chrostowski, “Automated control algorithms for silicon Photonic polarization receiver,” Opt. Exp., vol. 28, no. 2, pp. 1885–1896, 2020.

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon Photonic ring resonator circuits,” Optica, vol. 6, no. 1, pp. 84–91, 2019.

Dandridge, A.

R. Miles, A. Dandridge, A. Tveten, H. Taylor, and T. Giallorenzi, “Feedback-induced line broadening in CW channel-substrate planar laser diodes,” Appl. Phys. Lett., vol. 37, no. 11, pp. 990–992, 1980.

Ding, R.

T. W. Baehr-Jones, M. A. Streshinsky, Y. Liu, M. J. Hochberg, R. Ding, and A. Tager, “Controlling back scattering in optical waveguide systems,” U.S. Patent 10133014, 20, 2018.

Doerr, C.

C. Doerr, L. Chen, and D. Vermeulen, “Silicon Photonics broadband modulation-based isolator,” Opt. Exp., vol. 22, no. 4, pp. 4493–4498, 2014.

Dong, C.-H.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, no. 1, pp. 1–6, 2015.

Dong, P.

P. Dong, “Travelling-wave Mach-Zehnder modulators functioning as optical isolators,” Opt. Exp., vol. 23, no. 8, pp. 10498–10505, 2015.

Dulal, P.

C. Zhang, P. Dulal, B. J. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using Seedlayer-free garnet,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.

Eftekhar, A. A.

P. Alipour, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Thermally reconfigurable device for adaptive reflection suppression on a silicon-on-insulator platform,” Opt. Lett., vol. 39, no. 5, pp. 1141–1144, 2014.

Elmoznine, D.

A. Ahmed, D. ElmoznineY. LimA. MaRylyakov, and S. Shekhar, “A dual-polarization silicon-photonic coherent transmitter supporting 552 Gb/s/wavelength,” IEEE J. Solid-State Circuits, vol. 55, no. 9 pp. 2597–2608, Sep. 2020.

Faires, D. J.

R. L. Burden and D. J. Faires, “Numerical analysis,” Brooks/Cole, 2011.

Fan, L.

L. Fan, “An all-silicon passive optical diode,” Science, vol. 335, no. 6067, pp. 447–450, 2012.

Fan, S.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nature Photon., vol. 9, no. 6, pp. 388–392, 2015.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nature Photon., vol. 3, no. 2, pp. 91–94, 2009.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no.  33901.

Fu, W.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, no. 1, pp. 1–6, 2015.

Gaeta, A. L.

K. Saha, Y. Okawachi, O. Kuzucu, M. Menard, M. Lipson, and A. L. Gaeta, “Chip-Scale broadband optical isolation via Bragg scattering four-wave mixing,” in Proc. CLEO: QELS_Fundam. Sci. Opt. Soc. Amer., 2013, Art. no. QF 1D-2.

Giallorenzi, T.

R. Miles, A. Dandridge, A. Tveten, H. Taylor, and T. Giallorenzi, “Feedback-induced line broadening in CW channel-substrate planar laser diodes,” Appl. Phys. Lett., vol. 37, no. 11, pp. 990–992, 1980.

Gorges, A.

V. Mackowiak, J. Peupelmann, Y. Ma, and A. Gorges, “NEP-Noise equivalent power,” Thorlabs, Inc., Newton, NJ, USA, White Paper, 2015.

Guo, G.-C.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, no. 1, pp. 1–6, 2015.

Hauck, J.

J. Hauck, “Stabilization and frequency control of a DFB laser with a tunable optical reflector integrated in a silicon photonics PIC,” J. Lightw. Technol., vol. 34, no. 23, pp. 5467–5473, 2016.

Hjelme, D. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372,  1991.

Hochberg, M. J.

T. W. Baehr-Jones, M. A. Streshinsky, Y. Liu, M. J. Hochberg, R. Ding, and A. Tager, “Controlling back scattering in optical waveguide systems,” U.S. Patent 10133014, 20, 2018.

Hua, Q.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, no. 1, pp. 1–6, 2016.

Hua, S.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, no. 1, pp. 1–6, 2016.

Huang, D.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 271–278, Nov./Dec. 2016.

D. Huang, “Dynamically reconfigurable integrated optical circulators,” Optica, vol. 4, no. 1, pp. 23–30, 2017.

Hutchings, D. C.

C. Zhang, P. Dulal, B. J. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using Seedlayer-free garnet,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.

Idjadi, M. H.

M. H. Idjadi and F. Aflatouni, “Nanophotonic phase noise filter in silicon,” Nature Photon., vol. 14, no. 4, pp. 234–239, 2020.

Ito, R.

N. Chinone, K. Aiki, and R. Ito, “Stabilization of semiconductor laser outputs by a mirror close to a laser facet,” Appl. Phys. Lett., vol. 33, no. 12, pp. 990–992, 1978.

Jaeger, N. A.

M. Ma, H. Shoman, K. Tang, S. Shekhar, N. A. Jaeger, and L. Chrostowski, “Automated control algorithms for silicon Photonic polarization receiver,” Opt. Exp., vol. 28, no. 2, pp. 1885–1896, 2020.

Jaeger, N. A. F.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2 × 2 adiabatic 3-dB coupler on silicon-on-insulator rib Waveguides,” in Proc. Photon. North Int. Soc. Opt. Photon., 2013, Art. no. .

Jalas, D.

D. Jalas “What is -and what is not- an optical isolator,” Nature Photon., vol. 7, no. 8, pp. 579–582, 2013.

Jayatilleka, H.

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon Photonic ring resonator circuits,” Optica, vol. 6, no. 1, pp. 84–91, 2019.

Jiang, L.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, no. 1, pp. 1–6, 2016.

Jiang, X.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, no. 1, pp. 1–6, 2016.

Jung, Y. J.

X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable Graphene-silicon Heterojunctions for Ultrasensitive Photodetection,” Nano Lett., vol. 13, no. 3, pp. 909–916, 2013.

Kallimani, K. I.

K. I. Kallimani and M. O’mahony, “Relative intensity noise for laser diodes with arbitrary amounts of optical feedback,” IEEE J. Quantum Electron., vol. 34, no. 8, pp. 1438–1446,  1998.

Kar, S.

X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable Graphene-silicon Heterojunctions for Ultrasensitive Photodetection,” Nano Lett., vol. 13, no. 3, pp. 909–916, 2013.

Kikuchi, K.

K. Kikuchi and T. Okoshi, “Simple formula giving spectrum-narrowing ratio of semiconductor-laser output obtained by optical feedback,” Electron. Lett., vol. 18, no. 1, pp. 10–12, 1982.

Kim, S.

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nature Photon., vol. 12, no. 2, pp. 91–97, 2018.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron., vol. QE-16, no. 3, pp. 347–355,  1980.

Krause, M.

M. Krause, H. Renner, and E. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal raman amplification,” Electron. Lett., vol. 44, no. 11, pp. 691–693, 2008.

Kromer, H.

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11 740–11 745, 2011.

Kruger, M.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with Subcoherence delay times,” IEEE J. Quantum Electron., vol. QE-22, no. 11, pp. 2070–2074,  1986.

Kuzucu, O.

K. Saha, Y. Okawachi, O. Kuzucu, M. Menard, M. Lipson, and A. L. Gaeta, “Chip-Scale broadband optical isolation via Bragg scattering four-wave mixing,” in Proc. CLEO: QELS_Fundam. Sci. Opt. Soc. Amer., 2013, Art. no. QF 1D-2.

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron., vol. QE-16, no. 3, pp. 347–355,  1980.

Lenstra, D.

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron., vol. 21, no. 6, pp. 674–679,  1985.

Li, A.

A. Li and W. Bogaerts, “Reconfigurable nonlinear nonreciprocal transmission in a silicon photonic integrated circuit,” Optica, vol. 7, no. 1, pp. 7–14, 2020.

Li, J.

S. Shao, J. Li, Y. Wu, S. Yang, H. Chen, and M. Chen, “Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector,” Opt. Lett., vol. 46, no. 13, pp. 3251–3254, 2021.

L. Tang, J. Li, S. Yang, H. Chen, and M. Chen, “A method for improving reflection tolerance of laser source in hybrid Photonic packaged micro-system,” IEEE Photon. Technol. Lett., vol. 33, no. 9, pp. 465–468,  2021.

Lim, Y.

A. Ahmed, D. ElmoznineY. LimA. MaRylyakov, and S. Shekhar, “A dual-polarization silicon-photonic coherent transmitter supporting 552 Gb/s/wavelength,” IEEE J. Solid-State Circuits, vol. 55, no. 9 pp. 2597–2608, Sep. 2020.

Liow, T.-Y.

T.-Y. Liow, “Silicon modulators and germanium Photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 307–315, Jan./Feb. 2010.

Lipson, M.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no.  33901.

K. Saha, Y. Okawachi, O. Kuzucu, M. Menard, M. Lipson, and A. L. Gaeta, “Chip-Scale broadband optical isolation via Bragg scattering four-wave mixing,” in Proc. CLEO: QELS_Fundam. Sci. Opt. Soc. Amer., 2013, Art. no. QF 1D-2.

Lira, H.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no.  33901.

Liu, F.

X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable Graphene-silicon Heterojunctions for Ultrasensitive Photodetection,” Nano Lett., vol. 13, no. 3, pp. 909–916, 2013.

Liu, Y.

T. W. Baehr-Jones, M. A. Streshinsky, Y. Liu, M. J. Hochberg, R. Ding, and A. Tager, “Controlling back scattering in optical waveguide systems,” U.S. Patent 10133014, 20, 2018.

Lu, Z.

Z. Lu, “Broadband silicon Photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Exp., vol. 23, no. 3, pp. 3795–3808, 2015.

Ma, A.

A. Ahmed, D. ElmoznineY. LimA. MaRylyakov, and S. Shekhar, “A dual-polarization silicon-photonic coherent transmitter supporting 552 Gb/s/wavelength,” IEEE J. Solid-State Circuits, vol. 55, no. 9 pp. 2597–2608, Sep. 2020.

Ma, M.

M. Ma, H. Shoman, K. Tang, S. Shekhar, N. A. Jaeger, and L. Chrostowski, “Automated control algorithms for silicon Photonic polarization receiver,” Opt. Exp., vol. 28, no. 2, pp. 1885–1896, 2020.

Ma, Y.

V. Mackowiak, J. Peupelmann, Y. Ma, and A. Gorges, “NEP-Noise equivalent power,” Thorlabs, Inc., Newton, NJ, USA, White Paper, 2015.

MacEachern, L.

A. Mokhtar, L. MacEachern, and S. Mahmoud, “Isolator-free DFB laser diode operating in feedback regime V,” in Proc. Active Passive Opt. Compon. Commun. VI, vol. 6389, 2006, Art. no. .

Mackowiak, V.

V. Mackowiak, J. Peupelmann, Y. Ma, and A. Gorges, “NEP-Noise equivalent power,” Thorlabs, Inc., Newton, NJ, USA, White Paper, 2015.

Mahmoud, S.

A. Mokhtar, L. MacEachern, and S. Mahmoud, “Isolator-free DFB laser diode operating in feedback regime V,” in Proc. Active Passive Opt. Compon. Commun. VI, vol. 6389, 2006, Art. no. .

Mandelberg, H.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with Subcoherence delay times,” IEEE J. Quantum Electron., vol. QE-22, no. 11, pp. 2070–2074,  1986.

McGrath, P.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with Subcoherence delay times,” IEEE J. Quantum Electron., vol. QE-22, no. 11, pp. 2070–2074,  1986.

Menard, M.

K. Saha, Y. Okawachi, O. Kuzucu, M. Menard, M. Lipson, and A. L. Gaeta, “Chip-Scale broadband optical isolation via Bragg scattering four-wave mixing,” in Proc. CLEO: QELS_Fundam. Sci. Opt. Soc. Amer., 2013, Art. no. QF 1D-2.

Mickelson, A. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372,  1991.

Miles, R.

R. Miles, A. Dandridge, A. Tveten, H. Taylor, and T. Giallorenzi, “Feedback-induced line broadening in CW channel-substrate planar laser diodes,” Appl. Phys. Lett., vol. 37, no. 11, pp. 990–992, 1980.

Mizumoto, T.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 271–278, Nov./Dec. 2016.

T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon Photonics using wafer-bonded magneto-optical garnet materials,” MRS Bull., vol. 43, no. 6, pp. 419–424, 2018.

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11 740–11 745, 2011.

Mokhtar, A.

A. Mokhtar, L. MacEachern, and S. Mahmoud, “Isolator-free DFB laser diode operating in feedback regime V,” in Proc. Active Passive Opt. Compon. Commun. VI, vol. 6389, 2006, Art. no. .

O’mahony, M.

K. I. Kallimani and M. O’mahony, “Relative intensity noise for laser diodes with arbitrary amounts of optical feedback,” IEEE J. Quantum Electron., vol. 34, no. 8, pp. 1438–1446,  1998.

Ohtsubo, J.

J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos. Berlin, Germany: Springer, 2012.

Okawachi, Y.

K. Saha, Y. Okawachi, O. Kuzucu, M. Menard, M. Lipson, and A. L. Gaeta, “Chip-Scale broadband optical isolation via Bragg scattering four-wave mixing,” in Proc. CLEO: QELS_Fundam. Sci. Opt. Soc. Amer., 2013, Art. no. QF 1D-2.

Okoshi, T.

K. Kikuchi and T. Okoshi, “Simple formula giving spectrum-narrowing ratio of semiconductor-laser output obtained by optical feedback,” Electron. Lett., vol. 18, no. 1, pp. 10–12, 1982.

Packard, H.

H. Packard, Lightwave Signal Analysers Measure Relative Intensity Noise. Palo Alto, CA, USA: Hewlett-Packard, 1991.

Petermann, K.

N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron., vol. QE-22, no. 5, pp. 642–650,  1986.

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron., vol. 24, no. 7, pp. 1242–1247,  1988.

N. Schunk and K. Petermann, “Stability analysis for laser diodes with short external cavities,” IEEE Photon. Technol. Lett., vol. 1, no. 3, pp. 49–51,  1989.

K. Petermann, Laser Diode Modulation and Noise. Berlin, Germany: Springer, 2012.

Peupelmann, J.

V. Mackowiak, J. Peupelmann, Y. Ma, and A. Gorges, “NEP-Noise equivalent power,” Thorlabs, Inc., Newton, NJ, USA, White Paper, 2015.

Pintus, P.

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11 740–11 745, 2011.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 271–278, Nov./Dec. 2016.

Qiang, X.

X. Qiang “Large-scale silicon quantum photonics implementing arbitrary two-Qbit processing,” Nature Photon., vol. 12, no. 9, pp. 534–539, 2018.

Renner, H.

M. Krause, H. Renner, and E. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal raman amplification,” Electron. Lett., vol. 44, no. 11, pp. 691–693, 2008.

Richter, L.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with Subcoherence delay times,” IEEE J. Quantum Electron., vol. QE-22, no. 11, pp. 2070–2074,  1986.

Rylyakov,

A. Ahmed, D. ElmoznineY. LimA. MaRylyakov, and S. Shekhar, “A dual-polarization silicon-photonic coherent transmitter supporting 552 Gb/s/wavelength,” IEEE J. Solid-State Circuits, vol. 55, no. 9 pp. 2597–2608, Sep. 2020.

Saha, K.

K. Saha, Y. Okawachi, O. Kuzucu, M. Menard, M. Lipson, and A. L. Gaeta, “Chip-Scale broadband optical isolation via Bragg scattering four-wave mixing,” in Proc. CLEO: QELS_Fundam. Sci. Opt. Soc. Amer., 2013, Art. no. QF 1D-2.

Schunk, N.

N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron., vol. QE-22, no. 5, pp. 642–650,  1986.

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron., vol. 24, no. 7, pp. 1242–1247,  1988.

N. Schunk and K. Petermann, “Stability analysis for laser diodes with short external cavities,” IEEE Photon. Technol. Lett., vol. 1, no. 3, pp. 49–51,  1989.

Selvaraja, S. K.

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photon. J., vol. 3, no. 3, pp. 422–432,  2011.

Shao, S.

S. Shao, J. Li, Y. Wu, S. Yang, H. Chen, and M. Chen, “Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector,” Opt. Lett., vol. 46, no. 13, pp. 3251–3254, 2021.

Shekhar, S.

M. Ma, H. Shoman, K. Tang, S. Shekhar, N. A. Jaeger, and L. Chrostowski, “Automated control algorithms for silicon Photonic polarization receiver,” Opt. Exp., vol. 28, no. 2, pp. 1885–1896, 2020.

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon Photonic ring resonator circuits,” Optica, vol. 6, no. 1, pp. 84–91, 2019.

A. Ahmed, D. ElmoznineY. LimA. MaRylyakov, and S. Shekhar, “A dual-polarization silicon-photonic coherent transmitter supporting 552 Gb/s/wavelength,” IEEE J. Solid-State Circuits, vol. 55, no. 9 pp. 2597–2608, Sep. 2020.

Shen, Z.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, no. 1, pp. 1–6, 2015.

Shi, W.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2 × 2 adiabatic 3-dB coupler on silicon-on-insulator rib Waveguides,” in Proc. Photon. North Int. Soc. Opt. Photon., 2013, Art. no. .

Shi, Y.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nature Photon., vol. 9, no. 6, pp. 388–392, 2015.

Shoji, Y.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 271–278, Nov./Dec. 2016.

Shoman, H.

H. Shoman, “Reconfigurable silicon photonic integrated circuits,” Ph.D. dissertation, Department of Electrical and Computer Engineering, Univ. British Columbia, Oct. 2020.

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon Photonic ring resonator circuits,” Optica, vol. 6, no. 1, pp. 84–91, 2019.

M. Ma, H. Shoman, K. Tang, S. Shekhar, N. A. Jaeger, and L. Chrostowski, “Automated control algorithms for silicon Photonic polarization receiver,” Opt. Exp., vol. 28, no. 2, pp. 1885–1896, 2020.

Sohn, D. B.

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nature Photon., vol. 12, no. 2, pp. 91–97, 2018.

Stadler, B. J.

C. Zhang, P. Dulal, B. J. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using Seedlayer-free garnet,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.

Streshinsky, M. A.

T. W. Baehr-Jones, M. A. Streshinsky, Y. Liu, M. J. Hochberg, R. Ding, and A. Tager, “Controlling back scattering in optical waveguide systems,” U.S. Patent 10133014, 20, 2018.

Sun, C.

C. Sun “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, no. 7583, pp. 534–538, 2015.

Tager, A.

T. W. Baehr-Jones, M. A. Streshinsky, Y. Liu, M. J. Hochberg, R. Ding, and A. Tager, “Controlling back scattering in optical waveguide systems,” U.S. Patent 10133014, 20, 2018.

Tang, K.

M. Ma, H. Shoman, K. Tang, S. Shekhar, N. A. Jaeger, and L. Chrostowski, “Automated control algorithms for silicon Photonic polarization receiver,” Opt. Exp., vol. 28, no. 2, pp. 1885–1896, 2020.

Tang, L.

L. Tang, J. Li, S. Yang, H. Chen, and M. Chen, “A method for improving reflection tolerance of laser source in hybrid Photonic packaged micro-system,” IEEE Photon. Technol. Lett., vol. 33, no. 9, pp. 465–468,  2021.

Taylor, H.

R. Miles, A. Dandridge, A. Tveten, H. Taylor, and T. Giallorenzi, “Feedback-induced line broadening in CW channel-substrate planar laser diodes,” Appl. Phys. Lett., vol. 37, no. 11, pp. 990–992, 1980.

Tien, M.-C.

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11 740–11 745, 2011.

Tkach, R.

R. Tkach and A. Chraplyvy, “Regimes of feedback effects in 1.5-$\mu$m distributed feedback lasers,” J. Lightw. Technol., vol. 4, no. 11, pp. 1655–1661, Nov. 1986.

Tveten, A.

R. Miles, A. Dandridge, A. Tveten, H. Taylor, and T. Giallorenzi, “Feedback-induced line broadening in CW channel-substrate planar laser diodes,” Appl. Phys. Lett., vol. 37, no. 11, pp. 990–992, 1980.

Verbeek, B.

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron., vol. 21, no. 6, pp. 674–679,  1985.

Vermeulen, D.

C. Doerr, L. Chen, and D. Vermeulen, “Silicon Photonics broadband modulation-based isolator,” Opt. Exp., vol. 22, no. 4, pp. 4493–4498, 2014.

Wang, K.

K. Wang, “Four-wave-mixing-based silicon integrated optical isolator with dynamic non-reciprocity,” IEEE Photon. Technol. Lett., vol. 28, no. 16, pp. 1739–1742,  2016.

Wang, Y.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2 × 2 adiabatic 3-dB coupler on silicon-on-insulator rib Waveguides,” in Proc. Photon. North Int. Soc. Opt. Photon., 2013, Art. no. .

Wen, J.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, no. 1, pp. 1–6, 2016.

Wu, Y.

S. Shao, J. Li, Y. Wu, S. Yang, H. Chen, and M. Chen, “Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector,” Opt. Lett., vol. 46, no. 13, pp. 3251–3254, 2021.

Wu, Z.

Z. Wu, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett., vol. 107, no. 22, 2015, Art. no. .

Xiao, M.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, no. 1, pp. 1–6, 2016.

Yang, K. Y.

K. Y. Yang “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nature Photon., vol. 14, no. 6 pp. 369–374, 2020.

Yang, S.

S. Shao, J. Li, Y. Wu, S. Yang, H. Chen, and M. Chen, “Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector,” Opt. Lett., vol. 46, no. 13, pp. 3251–3254, 2021.

L. Tang, J. Li, S. Yang, H. Chen, and M. Chen, “A method for improving reflection tolerance of laser source in hybrid Photonic packaged micro-system,” IEEE Photon. Technol. Lett., vol. 33, no. 9, pp. 465–468,  2021.

Yu, Z.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nature Photon., vol. 3, no. 2, pp. 91–94, 2009.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no.  33901.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nature Photon., vol. 9, no. 6, pp. 388–392, 2015.

Yun, H.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2 × 2 adiabatic 3-dB coupler on silicon-on-insulator rib Waveguides,” in Proc. Photon. North Int. Soc. Opt. Photon., 2013, Art. no. .

Zhang, C.

C. Zhang, P. Dulal, B. J. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using Seedlayer-free garnet,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 271–278, Nov./Dec. 2016.

Zhang, G.

G. Zhang “An integrated silicon photonic chip platform for continuous-variable quantum key distribution,” Nature Photon., vol. 13, no. 12, pp. 839–842, 2019.

Zhang, Y.

Y. Zhang “Monolithic integration of broadband optical isolators for polarization-diverse silicon Photonics,” Optica, vol. 6, no. 4, pp. 473–478, 2019.

Y. Zhang, “A compact and low loss Y-junction for submicron silicon Waveguide,” Opt. Exp., vol. 21, no. 1, pp. 1310–1316, 2013.

Zhang, Y.-L.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, no. 1, pp. 1–6, 2015.

Zou, C.-L.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, no. 1, pp. 1–6, 2015.

Other (63)

C. Sun “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, no. 7583, pp. 534–538, 2015.

A. H. Atabaki “Integrating photonics with silicon Nanoelectronics for the next generation of systems on a chip,” Nature, vol. 556, no. 7701, pp. 349–354, 2018.

G. Zhang “An integrated silicon photonic chip platform for continuous-variable quantum key distribution,” Nature Photon., vol. 13, no. 12, pp. 839–842, 2019.

X. Qiang “Large-scale silicon quantum photonics implementing arbitrary two-Qbit processing,” Nature Photon., vol. 12, no. 9, pp. 534–539, 2018.

D. Jalas “What is -and what is not- an optical isolator,” Nature Photon., vol. 7, no. 8, pp. 579–582, 2013.

R. Tkach and A. Chraplyvy, “Regimes of feedback effects in 1.5-$\mu$m distributed feedback lasers,” J. Lightw. Technol., vol. 4, no. 11, pp. 1655–1661, Nov. 1986.

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron., vol. 24, no. 7, pp. 1242–1247,  1988.

L. Bi, “On-chip optical isolation in Monolithically integrated non-reciprocal optical resonators,” Nature Photon., vol. 5, no. 12, p. 758, 2011.

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11 740–11 745, 2011.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 271–278, Nov./Dec. 2016.

T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon Photonics using wafer-bonded magneto-optical garnet materials,” MRS Bull., vol. 43, no. 6, pp. 419–424, 2018.

M. Krause, H. Renner, and E. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal raman amplification,” Electron. Lett., vol. 44, no. 11, pp. 691–693, 2008.

L. Fan, “An all-silicon passive optical diode,” Science, vol. 335, no. 6067, pp. 447–450, 2012.

Z. Wu, “Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure,” Appl. Phys. Lett., vol. 107, no. 22, 2015, Art. no. .

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, no. 1, pp. 1–6, 2015.

K. Wang, “Four-wave-mixing-based silicon integrated optical isolator with dynamic non-reciprocity,” IEEE Photon. Technol. Lett., vol. 28, no. 16, pp. 1739–1742,  2016.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, no. 1, pp. 1–6, 2016.

A. Li and W. Bogaerts, “Reconfigurable nonlinear nonreciprocal transmission in a silicon photonic integrated circuit,” Optica, vol. 7, no. 1, pp. 7–14, 2020.

K. Y. Yang “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nature Photon., vol. 14, no. 6 pp. 369–374, 2020.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nature Photon., vol. 3, no. 2, pp. 91–94, 2009.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no.  33901.

C. Doerr, L. Chen, and D. Vermeulen, “Silicon Photonics broadband modulation-based isolator,” Opt. Exp., vol. 22, no. 4, pp. 4493–4498, 2014.

P. Dong, “Travelling-wave Mach-Zehnder modulators functioning as optical isolators,” Opt. Exp., vol. 23, no. 8, pp. 10498–10505, 2015.

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nature Photon., vol. 12, no. 2, pp. 91–97, 2018.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nature Photon., vol. 9, no. 6, pp. 388–392, 2015.

N. Chinone, K. Aiki, and R. Ito, “Stabilization of semiconductor laser outputs by a mirror close to a laser facet,” Appl. Phys. Lett., vol. 33, no. 12, pp. 990–992, 1978.

P. Alipour, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Thermally reconfigurable device for adaptive reflection suppression on a silicon-on-insulator platform,” Opt. Lett., vol. 39, no. 5, pp. 1141–1144, 2014.

T. W. Baehr-Jones, M. A. Streshinsky, Y. Liu, M. J. Hochberg, R. Ding, and A. Tager, “Controlling back scattering in optical waveguide systems,” U.S. Patent 10133014, 20, 2018.

J. Bovington, “Optical device with reduced back reflection,” U.S. Patent 10365432, Jul. 30, 2019.

L. Tang, J. Li, S. Yang, H. Chen, and M. Chen, “A method for improving reflection tolerance of laser source in hybrid Photonic packaged micro-system,” IEEE Photon. Technol. Lett., vol. 33, no. 9, pp. 465–468,  2021.

S. Shao, J. Li, Y. Wu, S. Yang, H. Chen, and M. Chen, “Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector,” Opt. Lett., vol. 46, no. 13, pp. 3251–3254, 2021.

J. Hauck, “Stabilization and frequency control of a DFB laser with a tunable optical reflector integrated in a silicon photonics PIC,” J. Lightw. Technol., vol. 34, no. 23, pp. 5467–5473, 2016.

H. Shoman, “Reconfigurable silicon photonic integrated circuits,” Ph.D. dissertation, Department of Electrical and Computer Engineering, Univ. British Columbia, Oct. 2020.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron., vol. QE-16, no. 3, pp. 347–355,  1980.

N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron., vol. QE-22, no. 5, pp. 642–650,  1986.

R. L. Burden and D. J. Faires, “Numerical analysis,” Brooks/Cole, 2011.

K. I. Kallimani and M. O’mahony, “Relative intensity noise for laser diodes with arbitrary amounts of optical feedback,” IEEE J. Quantum Electron., vol. 34, no. 8, pp. 1438–1446,  1998.

H. Packard, Lightwave Signal Analysers Measure Relative Intensity Noise. Palo Alto, CA, USA: Hewlett-Packard, 1991.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2 × 2 adiabatic 3-dB coupler on silicon-on-insulator rib Waveguides,” in Proc. Photon. North Int. Soc. Opt. Photon., 2013, Art. no. .

Y. Zhang, “A compact and low loss Y-junction for submicron silicon Waveguide,” Opt. Exp., vol. 21, no. 1, pp. 1310–1316, 2013.

T.-Y. Liow, “Silicon modulators and germanium Photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 307–315, Jan./Feb. 2010.

X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable Graphene-silicon Heterojunctions for Ultrasensitive Photodetection,” Nano Lett., vol. 13, no. 3, pp. 909–916, 2013.

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photon. J., vol. 3, no. 3, pp. 422–432,  2011.

V. Mackowiak, J. Peupelmann, Y. Ma, and A. Gorges, “NEP-Noise equivalent power,” Thorlabs, Inc., Newton, NJ, USA, White Paper, 2015.

K. Kikuchi and T. Okoshi, “Simple formula giving spectrum-narrowing ratio of semiconductor-laser output obtained by optical feedback,” Electron. Lett., vol. 18, no. 1, pp. 10–12, 1982.

“Fab: Advanced micro foundry (AMF) silicon Photonics fabrication process,” Accessed: Apr. 07, 2020. [Online]. Available: https://www.cmc.ca/en/WhatWeOffer/Products/CMC-00200-03001.aspx

Z. Lu, “Broadband silicon Photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Exp., vol. 23, no. 3, pp. 3795–3808, 2015.

M. Ma, H. Shoman, K. Tang, S. Shekhar, N. A. Jaeger, and L. Chrostowski, “Automated control algorithms for silicon Photonic polarization receiver,” Opt. Exp., vol. 28, no. 2, pp. 1885–1896, 2020.

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon Photonic ring resonator circuits,” Optica, vol. 6, no. 1, pp. 84–91, 2019.

R. Miles, A. Dandridge, A. Tveten, H. Taylor, and T. Giallorenzi, “Feedback-induced line broadening in CW channel-substrate planar laser diodes,” Appl. Phys. Lett., vol. 37, no. 11, pp. 990–992, 1980.

D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron., vol. 21, no. 6, pp. 674–679,  1985.

C. Zhang, P. Dulal, B. J. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using Seedlayer-free garnet,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.

Y. Zhang “Monolithic integration of broadband optical isolators for polarization-diverse silicon Photonics,” Optica, vol. 6, no. 4, pp. 473–478, 2019.

K. Saha, Y. Okawachi, O. Kuzucu, M. Menard, M. Lipson, and A. L. Gaeta, “Chip-Scale broadband optical isolation via Bragg scattering four-wave mixing,” in Proc. CLEO: QELS_Fundam. Sci. Opt. Soc. Amer., 2013, Art. no. QF 1D-2.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372,  1991.

K. Petermann, Laser Diode Modulation and Noise. Berlin, Germany: Springer, 2012.

A. Mokhtar, L. MacEachern, and S. Mahmoud, “Isolator-free DFB laser diode operating in feedback regime V,” in Proc. Active Passive Opt. Compon. Commun. VI, vol. 6389, 2006, Art. no. .

N. Schunk and K. Petermann, “Stability analysis for laser diodes with short external cavities,” IEEE Photon. Technol. Lett., vol. 1, no. 3, pp. 49–51,  1989.

D. Huang, “Dynamically reconfigurable integrated optical circulators,” Optica, vol. 4, no. 1, pp. 23–30, 2017.

A. Ahmed, D. ElmoznineY. LimA. MaRylyakov, and S. Shekhar, “A dual-polarization silicon-photonic coherent transmitter supporting 552 Gb/s/wavelength,” IEEE J. Solid-State Circuits, vol. 55, no. 9 pp. 2597–2608, Sep. 2020.

M. H. Idjadi and F. Aflatouni, “Nanophotonic phase noise filter in silicon,” Nature Photon., vol. 14, no. 4, pp. 234–239, 2020.

J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos. Berlin, Germany: Springer, 2012.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with Subcoherence delay times,” IEEE J. Quantum Electron., vol. QE-22, no. 11, pp. 2070–2074,  1986.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.