Abstract

Many breakthroughs in the laboratories often do not bridge the gap between research and commercialization. However, silicon photonics bucked the trend, with industry observers estimating the commercial market to close in on a billion dollars in 2020 [45]. Silicon photonics leverages the billions of dollars and decades of research poured into silicon semiconductor device processing to enable high yield, robust processing, and most of all, low cost. Silicon is also a good optical material, with transparency in the commercially important infrared wavelength bands, and is a suitable platform for large-scale photonic integrated circuits. Silicon photonics is therefore slated to address the world's ever-increasing needs for bandwidth. It is part of an emerging ecosystem which includes designers, foundries, and integrators. In this paper, we review most of the foundries that presently enable silicon photonics integrated circuits fabrication. Some of these are pilot lines of major research institutes, and others are fully commercial pure-play foundries. Since silicon photonics has been commercially active for some years, foundries have released process design kits (PDK) that contain a standard device library. These libraries represent optimized and well-tested photonic elements, whose performance reflects the stability and maturity of the integration platforms. We will document the early works in silicon photonics, as well as its commercial status. We will provide a comprehensive review of the development of silicon photonics and the foundry services which enable the productization, including various efforts to develop and release PDK devices. In this context, we will report the long-standing efforts and contributions that previously IME/A*STAR and now AMF has dedicated to accelerating this journey.

PDF Article

References

  • View by:

  1. A. E.-J. Lim, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 405–416, 2014.
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1678–1687, 2006.
  3. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4600–4615, 2006.
  4. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129, 1987.
  5. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2448–2449, 1995.
  6. C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett., vol. 31, no. 6, pp. 451–452, 1995.
  7. M. Bruel, “Process for the production of thin semiconductor material films,” U.S. Patent 5374564A, 20, 1994.
  8. A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightw. Technol., vol. 12, no. 10, pp. 1771–1776, 1994.
  9. P. Dumon, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1328–1330, 2004.
  10. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Exp., vol. 17, no. 6, pp. 4752–4757, 2009.
  11. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett., vol. 26, no. 23, pp. 1888–1890, 2001.
  12. A. S. A. Sakai, G. H. G. Hara, and T. B. T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” JPN. J. Appl. Phys., vol. 40, no. 4B, 2001, Paper L383.
  13. A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron., vol. E85-C, no. 4, pp. 1033–1038, 2002.
  14. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 2R, p. 646, 2004.
  15. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 5B, pp. L673–L675, 2004.
  16. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett., vol. 28, no. 15, pp. 1302–1304, 2003.
  17. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett., vol. 38, no. 25, pp. 1669–1670, 2002.
  18. D.-X. Xu, “Silicon photonic integration platform—have we found the sweet spot?,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 189–205, 2014.
  19. P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulator,” Electron. Lett., vol. 31, no. 24, pp. 2097–2098, 1995.
  20. P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 940–942, 1997.
  21. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.
  22. L. Liao, “High speed silicon Mach-Zehnder modulator,” Opt. Exp., vol. 13, no. 8, pp. 3129–3135, 2005.
  23. A. Liu, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature, vol. 427, no. 6975, pp. 615–618, 2004.
  24. H. Presting, “Ultrathin SimGen strained layer superlattices-a step towards Si optoelectronics,” Semicond. Sci. Technol., vol. 7, no. 9, pp. 1127–1148, 1992.
  25. A. Splett, “Integration of waveguides and photodetectors in SiGe for 1.3 μm operation,” IEEE Photon. Technol. Lett., vol. 6, no. 1, pp. 59–61, 1994.
  26. H.-C. Luan, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett., vol. 75, no. 19, pp. 2909–2911, 1999.
  27. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, no. 3, pp. 1782–1802, 2010.
  28. H. Rong, “A continuous-wave Raman silicon laser,” Nature, vol. 433, no. 7027, pp. 725–728, 2005.
  29. L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, 2016, Art. no. .
  30. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature, vol. 498, no. 7455, pp. 470–474, 2013.
  31. N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science, vol. 360, no. 6393, pp. 1113–1116, 2018.
  32. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett., vol. 29, no. 23, pp. 2749–2751, 2004.
  33. D. Vermeulen, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-on-insulator platform,” Opt. Exp., vol. 18, no. 17, pp. 18278–18283, 2010.
  34. J. Wang, “Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, pp. 1–3.
  35. J. Lianxi, “High efficient suspended coupler based on IME's MPW platform with 193nm lithography,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.
  36. S. Takahashi, K. Horiuchi, K. Tatsukoshi, M. Ono, N. Imajo, and T. Mobely, “Development of through glass via (TGV) formation technology using electrical discharging for 2.5/3D integrated packaging,” in Proc. IEEE 63rd Electron. Compon. Technol. Conf., 2013, pp. 348–352.
  37. X. Zhang, “Heterogeneous vol.2.5D integration on through silicon interposer,” Appl. Phys. Rev., vol. 2, no. 2, 2015, Art. no. .
  38. “Luxtera introduces industry's first 40G optical active cable, world's first CMOS photonics product,” 14, 2007. Accessed: Dec. 19, 2019. [Online]. Available: https://www.businesswire.com/news/home/20070814005195/en/Luxtera-Introduces-Industrys-40G-Optical-Active-Cable
  39. “The History of Acacia,” Acacia Commun., Inc, Accessed: Dec. 19, 2019. [Online]. Available: https://acacia-inc.com/acacia-advantage/history/
  40. I. Developer, “Silicon photonics market,” Ingenious e-Brain, Accessed: Dec. 19, 2019. [Online]. Available: https://www.iebrain.com/post/silicon-photonics-market/
  41. “Silicon Photonics Market | Size, Share and Market Forecast to 2023 | MarketsandMarketsTM,” Accessed: Dec. 19, 2019. [Online]. Available: https://www.marketsandmarkets.com/Market-Reports/silicon-photonics-116.html
  42. A. Rahim, T. Spuesens, R. Baets, and W. Bogaerts, “Open-access silicon photonics: Current status and emerging initiatives,” Proc. IEEE, vol. 106, no. 12, pp. 2313–2330, 2018.
  43. “Intel silicon photonics 100G PSM4 QSFP28 optical transceiver 96610,” Accessed: Aug. 27, 2020. [Online]. Available: https://www.intel.com/content/www/us/en/products/network-io/high-performance-fabrics/silicon-photonics/100g-psm4-qsfp28-optical-transceivers.html
  44. “Services,” VLC Photon., 12, 2020. Accessed: Aug. 27, 2020. [Online]. Available: https://www.vlcphotonics.com/services/
  45. “Yole silicon photonics market update,” Accessed: 01, 2020. [Online]. Available: http://www.yole.fr/PhotonicIC_SiPhotonics_MarketUpdate_Intel.aspx
  46. “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices - IEEE journals & magazine,” Accessed: Jul. 01, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8452165
  47. N. M. Fahrenkopf, C. McDonough, G. L. Leake, Z. Su, E. Timurdogan, and D. D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.
  48. “AMF-QP-RND-011 AMF PDK3.1 User Manual V1,” 2020. [Online]. Available: http://www.advmf.com/
  49. “AIM photonics,” AIM Photon., Accessed: May 08, 2020. [Online]. Available: http://www.aimphotonics.com
  50. “Si-photonics IC Si310-PHMP2M - CMP: Circuits multi-projets,” Accessed: May 08, 2020. [Online]. Available: https://mycmp.fr/datasheet/si-photonics-ic-si310-phmp2m
  51. “Cornerstone,” CORNERSTONE is a License Free, Open Source Silicon Photon. Rapid Prototyping Foundry, Accessed: Aug. 27, 2020. [Online]. Available: https://www.cornerstone.sotonfab.co.uk/
  52. K. Giewont, “300-mm monolithic silicon photonics foundry technology,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–11, 2019.
  53. “IHP - SiGe:C BiCMOS technologies,” Accessed: Dec. 29, 2020. [Online]. Available: https://www.ihp-microelectronics.com/en/services/mpw-prototyping/sigec-bicmos-technologies.html
  54. “Silicon photonic ICs for prototyping - Imec.” Accessed: May 08, 2020. [Online]. Available: https://www.imec-int.com/en/silicon-photonic-ICs-prototyping
  55. T. Aalto, “Open-access 3-μm SOI waveguide platform for dense photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–9, 2019.
  56. C. Bellegarde, “Improvement of sidewall roughness of submicron SOI waveguides by hydrogen plasma and annealing,” IEEE Photon. Technol. Lett., vol. 30, no. 7, pp. 591–594, 2018.
  57. “Phase-shift masks,” Accessed: Aug. 27, 2020. [Online]. Available: https://spie.org/publications/fg06_p78-80_phase-shift_masks?SSO=1
  58. D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018, doi: .
  59. R. Soref, “Mid-infrared photonics in Silicon and Germanium,” Nat. Photon., vol. 4, no. 8, 2010, Art. no. .
  60. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt., vol. 46, no. 33, pp. 8118–8133, 2007.
  61. D. Martyshkin, “Visible-near-middle infrared spanning supercontinuum generation in a Silicon Nitride (Si3N4) waveguide,” Opt. Mater. Exp., vol. 9, no. 6, pp. 2553–2559, 2019.
  62. P. Muñoz, “Foundry developments toward Silicon Nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–13, 2019.
  63. C. G. H. Roeloffzen, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4, pp. 1–21, 2018.
  64. B. Stern, X. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett., vol. 42, no. 21, pp. 4541–4544, 2017.
  65. B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: A promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem., vol. 236, pp. 759–764, 2016.
  66. A. Rahim, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Lightw. Technol., vol. 35, no. 4, pp. 639–649, 2017.
  67. S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Exp., vol. 22, no. 22, pp. 26517–26525, 2014.
  68. H. Zhao, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett., vol. 40, no. 10, pp. 2177–2180, 2015.
  69. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett., vol. 36, no. 17, pp. 3398–3400, 2011.
  70. Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Exp., vol. 22, no. 18, pp. 21859–21865, 2014.
  71. D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” in Proc. IEEE 14th Int. Conf. Group IV Photon. (GFP), 2017, pp. 83–84.
  72. D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Visible arrayed waveguide grating (400nm–700nm) for ultra-wide band (400–1700nm) integrated spectrometer for spectral tissue sensing,” in Proc. Eur. Conf. Lasers Electro-Opt. Eur. Quantum Electron. Conf. (CLEO/Europe-EQEC), 2017, Paper CK_3_1).
  73. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Exp., vol. 19, no. 23, pp. 23162–23170, 2011.
  74. “TriPleX: A versatile dielectric photonic platform in: Advanced Optical Technologies vol. 4 Issue 2 (2015),” Accessed: May 11, 2020. [Online]. Available: https://www.degruyter.com/view/journals/aot/4/2/article-p189.xml
  75. M. H. P. Pfeiffer, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica, vol. 3, no. 1, pp. 20–25, 2016.
  76. M. H. P. Pfeiffer, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4, pp. 1–11, 2018.
  77. A. Z. Subramanian, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J, vol. 5, no. 6, pp. 2202809–2202809, 2013.
  78. R. M. de Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron., vol. 4, no. 6, pp. 930–937, 1998.
  79. K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Exp., vol. 21, no. 19, pp. 22829–22833, 2013.
  80. “Multi project wafer service >lionix international,” LioniX Int., 06, 2016. Accessed: May 11, 2020. [Online]. Available: https://photonics.lionix-international.com/mpw-service/
  81. “Foundry,” LIGENTEC, Accessed: May 11, 2020. [Online]. Available: https://www.ligentec.com/ligentec-foundry/
  82. “PIX4life – Bio-photonics pilot line,” Accessed: May 11, 2020. [Online]. Available: https://pix4life.eu/
  83. W. D. Sacher, “Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers,” Opt. Exp., vol. 27, no. 26, pp. 37400–37418, 2019.
  84. W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol., vol. 33, no. 4, pp. 901–910, 2015.
  85. G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today, vol. 8, no. 1, pp. 40–50, 2005.
  86. G. Zhou, “Silicon Mach-Zehnder modulator using a highly-efficient L-shape PN junction,” in Proc. 10th Int. Conf. Inf. Opt. Photon., 2018, Art. no. .
  87. Z. Yong, “U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band,” Opt. Exp., vol. 25, no. 7, pp. 8425–8439, 2017.
  88. D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fedeli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Exp., vol. 18, no. 18, pp. 19064–19069, 2010.
  89. H. Xu, “High speed silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Exp., vol. 20, no. 14, pp. 15093–15099, 2012.
  90. I. Kang, “Phase-shift-keying and on-off-keying with improved performances using electroabsorption modulators with interferometric effects,” Opt. Exp., vol. 15, no. 4, pp. 1467–1473, 2007.
  91. A. Melikyan, N. Kaneda, K. Kim, Y. Baeyens, and P. Dong, “Differential drive I/Q modulator based on silicon photonic electro-absorption modulators,” J. Lightw. Technol., vol. 38, no. 11, pp. 2872–2876, Jun. 2020, doi: .
    [Crossref]
  92. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Exp., vol. 20, no. 27, pp. 27999–28008, 2012.
  93. J. Sun, “A 128 Gb/s PAM4 Silicon Microring Modulator,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, 2018, Paper Th4A.7.
  94. Y. Hu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Exp., vol. 20, no. 14, pp. 15079–15085, 2012.
  95. J. Zhou, J. Wang, L. Zhu, Q. Zhang, Q. Zhang, and J. Hong, “Silicon photonics carrier depletion modulators capable of 85Gbaud 16QAM and 64Gbaud 64QAM,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper Tu2H.2.
  96. D. Patel, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Exp., vol. 23, no. 11, pp. 14263–14287, 2015.
  97. S. A. Srinivasan, “56 Gb/s germanium waveguide electro-absorption modulator,” J. Lightw. Technol., vol. 34, no. 2, pp. 419–424, 2016.
  98. Y. Tang, J. D. Peters, and J. E. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Exp., vol. 20, no. 10, pp. 11529–11535, 2012.
  99. T. Hiraki, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nature Photon., vol. 11, no. 8, pp. 482–485, 2017.
  100. M. Webster, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in Proc. 11th Int. Conf. Group IV Photon., 2014, pp. 1–2.
  101. N. C. Harris, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Exp., vol. 22, no. 9, pp. 10487–10493, 2014.
  102. M. Iodice, F. G. D. Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng., vol. 42, no. 1, pp. 169–175, 2003.
  103. X. Tu, “50-Gb/s silicon Mach-Zehnder interferometer-based optical modulator with only 1.3 Vpp driving voltages,” in Proc. IEEE 16th Electron. Packag. Technol. Conf., 2014, pp. 851–854.
  104. T.-Y. Liow, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 307–315, 2010.
  105. M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications,” Photon. Res., vol. 6, no. 2, pp. 109–116, 2018.
  106. J. Wang, “Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode,” Photon. Res., vol. 3, no. 3, pp. 58–62, 2015.
  107. K. Goi, “Low-loss high-speed silicon IQ modulator for QPSK/DQPSK in C and L bands,” Opt. Exp., vol. 22, no. 9, pp. 10703–10709, 2014.
  108. H. Sepehrian, J. Lin, L. A. Rusch, and W. Shi, “Silicon Photonic IQ Modulators for 400 Gb/s and Beyond,” J. Lightw. Technol., vol. 37, no. 13, pp. 3078–3086, 2019.
  109. J. Zhou, J. Wang, L. Zhu, and Q. Zhang, “High baud rate all-silicon photonics carrier depletion modulators,” J. Lightw. Technol., vol. 38, no. 2, pp. 272–281, 2020.
  110. R. Ding, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol., vol. 32, no. 12, pp. 2240–2247, 2014.
  111. “OSA | Coplanar-waveguide-based silicon Mach–Zehnder modulator using a meandering optical waveguide and alternating-side PN junction loading,” Accessed: Apr. 15, 2020. [Online]. Available: https://www.osapublishing.org/ol/abstract.cfm?uri=ol-41-18-4401
  112. X. Tu, “Silicon optical modulator with shield coplanar waveguide electrodes,” Opt. Exp., vol. 22, no. 19, pp. 23724–23731, 2014.
  113. P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Exp., vol. 20, no. 6, pp. 6163–6169, 2012.
  114. J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, “Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on an SOI platform,” Opt. Exp., vol. 15, no. 2, pp. 623–628, 2007.
  115. T. Yin, “31GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Exp., vol. 15, no. 21, pp. 13965–13971, 2007.
  116. L. Vivien, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Exp., vol. 17, no. 8, pp. 6252–6257, 2009.
  117. H. T. Chen, “High-responsivity low-voltage 28-Gb/s Ge p-i-n photodetector with silicon contacts,” J. Lightw. Technol., vol. 33, no. 4, pp. 820–824, 2015.
  118. H. Chen, “-1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Exp., vol. 24, no. 5, pp. 4622–4631, 2016.
  119. G. Li, “Improving CMOS-compatible germanium photodetectors,” Opt. Exp., vol. 20, no. 24, pp. 26345–26350, 2012.
  120. Y. Zhang, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Exp., vol. 22, no. 9, pp. 11367–11375, 2014.
  121. R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on silicon photonics,” Opt. Exp., vol. 23, no. 9, pp. 11975–11984, 2015.
  122. S. Lischke, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Exp., vol. 23, no. 21, pp. 27213–27220, 2015.
  123. L. Virot, “Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction,” Opt. Exp., vol. 25, no. 16, pp. 19487–19496, 2017.
  124. D. Marris-Morini, “A 40 Gbit/s optical link on a 300-mm silicon platform,” Opt. Exp., vol. 22, no. 6, pp. 6674–6679, 2014.
  125. S. Liao, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Exp., vol. 19, no. 11, pp. 10967–10972, 2011.
  126. M. J. Byrd, “Mode-evolution-based coupler for high saturation power Ge-on-Si photodetectors,” Opt. Lett., vol. 42, no. 4, pp. 851–854, 2017.
  127. M. M. P. Fard, G. Cowan, and O. Liboiron-Ladouceur, “Responsivity optimization of a high-speed germanium-on-silicon photodetector,” Opt. Exp., vol. 24, no. 24, pp. 27738–27752, 2016.
  128. “Process design kit (PDK),” AIM Photon., [Online]. Available: http://www.aimphotonics.com/process-design-kit, Accessed: 20, 2020.
  129. L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, 2016, Art. no. .
  130. M. Iqbal, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 3, pp. 654–661, 2010.
  131. Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-Infrared and spectroscopic sensing,” ACS Nano, vol. 8, no. 7, pp. 6955–6961, 2014.
  132. C. V. Poulton, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett., vol. 42, no. 20, pp. 4091–4094, 2017.
  133. T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, no. 3, pp. 2511–2528, 2017.
  134. Y. Ding, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” Npj Quantum Inf., vol. 3, no. 1, pp. 1–7, 2017.
  135. P. Sibson, “Chip-based quantum key distribution,” Nature Commun., vol. 8, no. 1, pp. 1–6, 2017.
  136. Y. Shen, “Deep learning with coherent nanophotonic circuits,” Nature Photon., vol. 11, no. 7, pp. 441–446, 2017.
  137. A. N. Tait, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017.

2020 (2)

A. Melikyan, N. Kaneda, K. Kim, Y. Baeyens, and P. Dong, “Differential drive I/Q modulator based on silicon photonic electro-absorption modulators,” J. Lightw. Technol., vol. 38, no. 11, pp. 2872–2876, Jun. 2020, doi: .
[Crossref]

J. Zhou, J. Wang, L. Zhu, and Q. Zhang, “High baud rate all-silicon photonics carrier depletion modulators,” J. Lightw. Technol., vol. 38, no. 2, pp. 272–281, 2020.

2019 (7)

H. Sepehrian, J. Lin, L. A. Rusch, and W. Shi, “Silicon Photonic IQ Modulators for 400 Gb/s and Beyond,” J. Lightw. Technol., vol. 37, no. 13, pp. 3078–3086, 2019.

W. D. Sacher, “Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers,” Opt. Exp., vol. 27, no. 26, pp. 37400–37418, 2019.

N. M. Fahrenkopf, C. McDonough, G. L. Leake, Z. Su, E. Timurdogan, and D. D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

K. Giewont, “300-mm monolithic silicon photonics foundry technology,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–11, 2019.

T. Aalto, “Open-access 3-μm SOI waveguide platform for dense photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–9, 2019.

D. Martyshkin, “Visible-near-middle infrared spanning supercontinuum generation in a Silicon Nitride (Si3N4) waveguide,” Opt. Mater. Exp., vol. 9, no. 6, pp. 2553–2559, 2019.

P. Muñoz, “Foundry developments toward Silicon Nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–13, 2019.

2018 (6)

C. G. H. Roeloffzen, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4, pp. 1–21, 2018.

C. Bellegarde, “Improvement of sidewall roughness of submicron SOI waveguides by hydrogen plasma and annealing,” IEEE Photon. Technol. Lett., vol. 30, no. 7, pp. 591–594, 2018.

M. H. P. Pfeiffer, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4, pp. 1–11, 2018.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science, vol. 360, no. 6393, pp. 1113–1116, 2018.

A. Rahim, T. Spuesens, R. Baets, and W. Bogaerts, “Open-access silicon photonics: Current status and emerging initiatives,” Proc. IEEE, vol. 106, no. 12, pp. 2313–2330, 2018.

M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications,” Photon. Res., vol. 6, no. 2, pp. 109–116, 2018.

2017 (12)

L. Virot, “Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction,” Opt. Exp., vol. 25, no. 16, pp. 19487–19496, 2017.

M. J. Byrd, “Mode-evolution-based coupler for high saturation power Ge-on-Si photodetectors,” Opt. Lett., vol. 42, no. 4, pp. 851–854, 2017.

C. V. Poulton, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett., vol. 42, no. 20, pp. 4091–4094, 2017.

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, no. 3, pp. 2511–2528, 2017.

Y. Ding, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” Npj Quantum Inf., vol. 3, no. 1, pp. 1–7, 2017.

P. Sibson, “Chip-based quantum key distribution,” Nature Commun., vol. 8, no. 1, pp. 1–6, 2017.

Y. Shen, “Deep learning with coherent nanophotonic circuits,” Nature Photon., vol. 11, no. 7, pp. 441–446, 2017.

A. N. Tait, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017.

A. Rahim, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Lightw. Technol., vol. 35, no. 4, pp. 639–649, 2017.

B. Stern, X. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett., vol. 42, no. 21, pp. 4541–4544, 2017.

Z. Yong, “U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band,” Opt. Exp., vol. 25, no. 7, pp. 8425–8439, 2017.

T. Hiraki, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nature Photon., vol. 11, no. 8, pp. 482–485, 2017.

2016 (7)

S. A. Srinivasan, “56 Gb/s germanium waveguide electro-absorption modulator,” J. Lightw. Technol., vol. 34, no. 2, pp. 419–424, 2016.

M. H. P. Pfeiffer, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica, vol. 3, no. 1, pp. 20–25, 2016.

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: A promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem., vol. 236, pp. 759–764, 2016.

L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, 2016, Art. no. .

M. M. P. Fard, G. Cowan, and O. Liboiron-Ladouceur, “Responsivity optimization of a high-speed germanium-on-silicon photodetector,” Opt. Exp., vol. 24, no. 24, pp. 27738–27752, 2016.

L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, 2016, Art. no. .

H. Chen, “-1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Exp., vol. 24, no. 5, pp. 4622–4631, 2016.

2015 (8)

H. T. Chen, “High-responsivity low-voltage 28-Gb/s Ge p-i-n photodetector with silicon contacts,” J. Lightw. Technol., vol. 33, no. 4, pp. 820–824, 2015.

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on silicon photonics,” Opt. Exp., vol. 23, no. 9, pp. 11975–11984, 2015.

S. Lischke, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Exp., vol. 23, no. 21, pp. 27213–27220, 2015.

J. Wang, “Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode,” Photon. Res., vol. 3, no. 3, pp. 58–62, 2015.

X. Zhang, “Heterogeneous vol.2.5D integration on through silicon interposer,” Appl. Phys. Rev., vol. 2, no. 2, 2015, Art. no. .

H. Zhao, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett., vol. 40, no. 10, pp. 2177–2180, 2015.

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol., vol. 33, no. 4, pp. 901–910, 2015.

D. Patel, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Exp., vol. 23, no. 11, pp. 14263–14287, 2015.

2014 (11)

N. C. Harris, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Exp., vol. 22, no. 9, pp. 10487–10493, 2014.

S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Exp., vol. 22, no. 22, pp. 26517–26525, 2014.

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Exp., vol. 22, no. 18, pp. 21859–21865, 2014.

A. E.-J. Lim, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 405–416, 2014.

D.-X. Xu, “Silicon photonic integration platform—have we found the sweet spot?,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 189–205, 2014.

K. Goi, “Low-loss high-speed silicon IQ modulator for QPSK/DQPSK in C and L bands,” Opt. Exp., vol. 22, no. 9, pp. 10703–10709, 2014.

R. Ding, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol., vol. 32, no. 12, pp. 2240–2247, 2014.

X. Tu, “Silicon optical modulator with shield coplanar waveguide electrodes,” Opt. Exp., vol. 22, no. 19, pp. 23724–23731, 2014.

D. Marris-Morini, “A 40 Gbit/s optical link on a 300-mm silicon platform,” Opt. Exp., vol. 22, no. 6, pp. 6674–6679, 2014.

Y. Zhang, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Exp., vol. 22, no. 9, pp. 11367–11375, 2014.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-Infrared and spectroscopic sensing,” ACS Nano, vol. 8, no. 7, pp. 6955–6961, 2014.

2013 (3)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature, vol. 498, no. 7455, pp. 470–474, 2013.

A. Z. Subramanian, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J, vol. 5, no. 6, pp. 2202809–2202809, 2013.

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Exp., vol. 21, no. 19, pp. 22829–22833, 2013.

2012 (6)

H. Xu, “High speed silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Exp., vol. 20, no. 14, pp. 15093–15099, 2012.

Y. Tang, J. D. Peters, and J. E. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Exp., vol. 20, no. 10, pp. 11529–11535, 2012.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Exp., vol. 20, no. 27, pp. 27999–28008, 2012.

Y. Hu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Exp., vol. 20, no. 14, pp. 15079–15085, 2012.

G. Li, “Improving CMOS-compatible germanium photodetectors,” Opt. Exp., vol. 20, no. 24, pp. 26345–26350, 2012.

P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Exp., vol. 20, no. 6, pp. 6163–6169, 2012.

2011 (3)

S. Liao, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Exp., vol. 19, no. 11, pp. 10967–10972, 2011.

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Exp., vol. 19, no. 23, pp. 23162–23170, 2011.

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett., vol. 36, no. 17, pp. 3398–3400, 2011.

2010 (6)

R. Soref, “Mid-infrared photonics in Silicon and Germanium,” Nat. Photon., vol. 4, no. 8, 2010, Art. no. .

T.-Y. Liow, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 307–315, 2010.

D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fedeli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Exp., vol. 18, no. 18, pp. 19064–19069, 2010.

D. Vermeulen, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-on-insulator platform,” Opt. Exp., vol. 18, no. 17, pp. 18278–18283, 2010.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, no. 3, pp. 1782–1802, 2010.

M. Iqbal, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 3, pp. 654–661, 2010.

2009 (2)

L. Vivien, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Exp., vol. 17, no. 8, pp. 6252–6257, 2009.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Exp., vol. 17, no. 6, pp. 4752–4757, 2009.

2007 (4)

I. Kang, “Phase-shift-keying and on-off-keying with improved performances using electroabsorption modulators with interferometric effects,” Opt. Exp., vol. 15, no. 4, pp. 1467–1473, 2007.

R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt., vol. 46, no. 33, pp. 8118–8133, 2007.

J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, “Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on an SOI platform,” Opt. Exp., vol. 15, no. 2, pp. 623–628, 2007.

T. Yin, “31GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Exp., vol. 15, no. 21, pp. 13965–13971, 2007.

2006 (2)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1678–1687, 2006.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4600–4615, 2006.

2005 (4)

H. Rong, “A continuous-wave Raman silicon laser,” Nature, vol. 433, no. 7027, pp. 725–728, 2005.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

L. Liao, “High speed silicon Mach-Zehnder modulator,” Opt. Exp., vol. 13, no. 8, pp. 3129–3135, 2005.

G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today, vol. 8, no. 1, pp. 40–50, 2005.

2004 (5)

A. Liu, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature, vol. 427, no. 6975, pp. 615–618, 2004.

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett., vol. 29, no. 23, pp. 2749–2751, 2004.

P. Dumon, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1328–1330, 2004.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 2R, p. 646, 2004.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 5B, pp. L673–L675, 2004.

2003 (2)

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett., vol. 28, no. 15, pp. 1302–1304, 2003.

M. Iodice, F. G. D. Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng., vol. 42, no. 1, pp. 169–175, 2003.

2002 (2)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett., vol. 38, no. 25, pp. 1669–1670, 2002.

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron., vol. E85-C, no. 4, pp. 1033–1038, 2002.

2001 (2)

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett., vol. 26, no. 23, pp. 1888–1890, 2001.

A. S. A. Sakai, G. H. G. Hara, and T. B. T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” JPN. J. Appl. Phys., vol. 40, no. 4B, 2001, Paper L383.

1999 (1)

H.-C. Luan, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett., vol. 75, no. 19, pp. 2909–2911, 1999.

1998 (1)

R. M. de Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron., vol. 4, no. 6, pp. 930–937, 1998.

1997 (1)

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 940–942, 1997.

1995 (3)

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2448–2449, 1995.

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett., vol. 31, no. 6, pp. 451–452, 1995.

P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulator,” Electron. Lett., vol. 31, no. 24, pp. 2097–2098, 1995.

1994 (2)

A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightw. Technol., vol. 12, no. 10, pp. 1771–1776, 1994.

A. Splett, “Integration of waveguides and photodetectors in SiGe for 1.3 μm operation,” IEEE Photon. Technol. Lett., vol. 6, no. 1, pp. 59–61, 1994.

1992 (1)

H. Presting, “Ultrathin SimGen strained layer superlattices-a step towards Si optoelectronics,” Semicond. Sci. Technol., vol. 7, no. 9, pp. 1127–1148, 1992.

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129, 1987.

Aalto, T.

T. Aalto, “Open-access 3-μm SOI waveguide platform for dense photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–9, 2019.

Albers, H.

R. M. de Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron., vol. 4, no. 6, pp. 930–937, 1998.

Almeida, V. R.

Asano, T.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature, vol. 498, no. 7455, pp. 470–474, 2013.

Baba, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 2R, p. 646, 2004.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 5B, pp. L673–L675, 2004.

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron., vol. E85-C, no. 4, pp. 1033–1038, 2002.

Baba, T. B. T.

A. S. A. Sakai, G. H. G. Hara, and T. B. T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” JPN. J. Appl. Phys., vol. 40, no. 4B, 2001, Paper L383.

Baets, R.

A. Rahim, T. Spuesens, R. Baets, and W. Bogaerts, “Open-access silicon photonics: Current status and emerging initiatives,” Proc. IEEE, vol. 106, no. 12, pp. 2313–2330, 2018.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, no. 3, pp. 1782–1802, 2010.

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett., vol. 29, no. 23, pp. 2749–2751, 2004.

Baeyens, Y.

A. Melikyan, N. Kaneda, K. Kim, Y. Baeyens, and P. Dong, “Differential drive I/Q modulator based on silicon photonic electro-absorption modulators,” J. Lightw. Technol., vol. 38, no. 11, pp. 2872–2876, Jun. 2020, doi: .
[Crossref]

Barh, A.

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: A promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem., vol. 236, pp. 759–764, 2016.

Beeker, W.

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Exp., vol. 19, no. 23, pp. 23162–23170, 2011.

Behunin, R. O.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science, vol. 360, no. 6393, pp. 1113–1116, 2018.

Bellegarde, C.

C. Bellegarde, “Improvement of sidewall roughness of submicron SOI waveguides by hydrogen plasma and annealing,” IEEE Photon. Technol. Lett., vol. 30, no. 7, pp. 591–594, 2018.

Bellucci, M.

M. Iodice, F. G. D. Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng., vol. 42, no. 1, pp. 169–175, 2003.

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129, 1987.

Bergman, K.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Exp., vol. 20, no. 27, pp. 27999–28008, 2012.

Bienstman, P.

Blumenthal, D. J.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018, doi: .

Bogaerts, W.

A. Rahim, T. Spuesens, R. Baets, and W. Bogaerts, “Open-access silicon photonics: Current status and emerging initiatives,” Proc. IEEE, vol. 106, no. 12, pp. 2313–2330, 2018.

Bowers, J. E.

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, no. 3, pp. 2511–2528, 2017.

Y. Tang, J. D. Peters, and J. E. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Exp., vol. 20, no. 10, pp. 11529–11535, 2012.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, no. 3, pp. 1782–1802, 2010.

Bruel, M.

M. Bruel, “Process for the production of thin semiconductor material films,” U.S. Patent 5374564A, 20, 1994.

Burla, M.

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Exp., vol. 19, no. 23, pp. 23162–23170, 2011.

Byrd, M. J.

Cardenas, J.

S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Exp., vol. 22, no. 22, pp. 26517–26525, 2014.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Exp., vol. 17, no. 6, pp. 4752–4757, 2009.

Carroll, L.

L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, 2016, Art. no. .

L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, 2016, Art. no. .

Cerrina, F.

Chan, J.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Exp., vol. 20, no. 27, pp. 27999–28008, 2012.

Chen, H.

H. Chen, “-1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Exp., vol. 24, no. 5, pp. 4622–4631, 2016.

Chen, H. T.

H. T. Chen, “High-responsivity low-voltage 28-Gb/s Ge p-i-n photodetector with silicon contacts,” J. Lightw. Technol., vol. 33, no. 4, pp. 820–824, 2015.

Chen, L.

P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Exp., vol. 20, no. 6, pp. 6163–6169, 2012.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Exp., vol. 20, no. 27, pp. 27999–28008, 2012.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Exp., vol. 17, no. 6, pp. 4752–4757, 2009.

Chen, Y.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-Infrared and spectroscopic sensing,” ACS Nano, vol. 8, no. 7, pp. 6955–6961, 2014.

P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Exp., vol. 20, no. 6, pp. 6163–6169, 2012.

Chihara, M.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature, vol. 498, no. 7455, pp. 470–474, 2013.

Coldren, L.

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, no. 3, pp. 2511–2528, 2017.

Coolbaugh, D. D.

N. M. Fahrenkopf, C. McDonough, G. L. Leake, Z. Su, E. Timurdogan, and D. D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

Coppinger, F.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 940–942, 1997.

Corte, F. G. D.

M. Iodice, F. G. D. Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng., vol. 42, no. 1, pp. 169–175, 2003.

Cowan, G.

M. M. P. Fard, G. Cowan, and O. Liboiron-Ladouceur, “Responsivity optimization of a high-speed germanium-on-silicon photodetector,” Opt. Exp., vol. 24, no. 24, pp. 27738–27752, 2016.

de Ridder, R. M.

R. M. de Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron., vol. 4, no. 6, pp. 930–937, 1998.

Developer, I.

I. Developer, “Silicon photonics market,” Ingenious e-Brain, Accessed: Dec. 19, 2019. [Online]. Available: https://www.iebrain.com/post/silicon-photonics-market/

Ding, R.

R. Ding, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol., vol. 32, no. 12, pp. 2240–2247, 2014.

Ding, Y.

Y. Ding, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” Npj Quantum Inf., vol. 3, no. 1, pp. 1–7, 2017.

Dong, P.

A. Melikyan, N. Kaneda, K. Kim, Y. Baeyens, and P. Dong, “Differential drive I/Q modulator based on silicon photonic electro-absorption modulators,” J. Lightw. Technol., vol. 38, no. 11, pp. 2872–2876, Jun. 2020, doi: .
[Crossref]

P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Exp., vol. 20, no. 6, pp. 6163–6169, 2012.

Driessen, A.

R. M. de Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron., vol. 4, no. 6, pp. 930–937, 1998.

Dumon, P.

P. Dumon, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1328–1330, 2004.

Dutt, A.

B. Stern, X. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett., vol. 42, no. 21, pp. 4541–4544, 2017.

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Exp., vol. 21, no. 19, pp. 22829–22833, 2013.

Fahrenkopf, N. M.

N. M. Fahrenkopf, C. McDonough, G. L. Leake, Z. Su, E. Timurdogan, and D. D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

Fard, M. M. P.

M. M. P. Fard, G. Cowan, and O. Liboiron-Ladouceur, “Responsivity optimization of a high-speed germanium-on-silicon photodetector,” Opt. Exp., vol. 24, no. 24, pp. 27738–27752, 2016.

Fathpour, S.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4600–4615, 2006.

Fedeli, J.-M.

D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fedeli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Exp., vol. 18, no. 18, pp. 19064–19069, 2010.

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 2R, p. 646, 2004.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 5B, pp. L673–L675, 2004.

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron., vol. E85-C, no. 4, pp. 1033–1038, 2002.

Gaeta, A. L.

S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Exp., vol. 22, no. 22, pp. 26517–26525, 2014.

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett., vol. 36, no. 17, pp. 3398–3400, 2011.

Gao, Y.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2448–2449, 1995.

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fedeli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Exp., vol. 18, no. 18, pp. 19064–19069, 2010.

Geuzebroek, D.

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” in Proc. IEEE 14th Int. Conf. Group IV Photon. (GFP), 2017, pp. 83–84.

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Visible arrayed waveguide grating (400nm–700nm) for ultra-wide band (400–1700nm) integrated spectrometer for spectral tissue sensing,” in Proc. Eur. Conf. Lasers Electro-Opt. Eur. Quantum Electron. Conf. (CLEO/Europe-EQEC), 2017, Paper CK_3_1).

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018, doi: .

Giewont, K.

K. Giewont, “300-mm monolithic silicon photonics foundry technology,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–11, 2019.

Goi, K.

K. Goi, “Low-loss high-speed silicon IQ modulator for QPSK/DQPSK in C and L bands,” Opt. Exp., vol. 22, no. 9, pp. 10703–10709, 2014.

Going, R.

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on silicon photonics,” Opt. Exp., vol. 23, no. 9, pp. 11975–11984, 2015.

Hara, G. H. G.

A. S. A. Sakai, G. H. G. Hara, and T. B. T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” JPN. J. Appl. Phys., vol. 40, no. 4B, 2001, Paper L383.

Harris, N. C.

N. C. Harris, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Exp., vol. 22, no. 9, pp. 10487–10493, 2014.

Heideman, R.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018, doi: .

Helkey, R.

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, no. 3, pp. 2511–2528, 2017.

Hiraki, T.

T. Hiraki, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nature Photon., vol. 11, no. 8, pp. 482–485, 2017.

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 2R, p. 646, 2004.

Hong, J.

J. Zhou, J. Wang, L. Zhu, Q. Zhang, Q. Zhang, and J. Hong, “Silicon photonics carrier depletion modulators capable of 85Gbaud 16QAM and 64Gbaud 64QAM,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper Tu2H.2.

Horiuchi, K.

S. Takahashi, K. Horiuchi, K. Tatsukoshi, M. Ono, N. Imajo, and T. Mobely, “Development of through glass via (TGV) formation technology using electrical discharging for 2.5/3D integrated packaging,” in Proc. IEEE 63rd Electron. Compon. Technol. Conf., 2013, pp. 348–352.

Hsu, K.

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on silicon photonics,” Opt. Exp., vol. 23, no. 9, pp. 11975–11984, 2015.

Hu, J.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-Infrared and spectroscopic sensing,” ACS Nano, vol. 8, no. 7, pp. 6955–6961, 2014.

Hu, Y.

Y. Hu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Exp., vol. 20, no. 14, pp. 15079–15085, 2012.

Huang, Y.

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol., vol. 33, no. 4, pp. 901–910, 2015.

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Exp., vol. 22, no. 18, pp. 21859–21865, 2014.

Imajo, N.

S. Takahashi, K. Horiuchi, K. Tatsukoshi, M. Ono, N. Imajo, and T. Mobely, “Development of through glass via (TGV) formation technology using electrical discharging for 2.5/3D integrated packaging,” in Proc. IEEE 63rd Electron. Compon. Technol. Conf., 2013, pp. 348–352.

Inui, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature, vol. 498, no. 7455, pp. 470–474, 2013.

Iodice, M.

M. Iodice, F. G. D. Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng., vol. 42, no. 1, pp. 169–175, 2003.

Iqbal, M.

M. Iqbal, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 3, pp. 654–661, 2010.

Jalali, B.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4600–4615, 2006.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 940–942, 1997.

P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulator,” Electron. Lett., vol. 31, no. 24, pp. 2097–2098, 1995.

Jason Png, C. E.

G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today, vol. 8, no. 1, pp. 40–50, 2005.

Ji, X.

Jonasz, M.

Jongthammanurak, S.

J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, “Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on an SOI platform,” Opt. Exp., vol. 15, no. 2, pp. 623–628, 2007.

Kaneda, N.

A. Melikyan, N. Kaneda, K. Kim, Y. Baeyens, and P. Dong, “Differential drive I/Q modulator based on silicon photonic electro-absorption modulators,” J. Lightw. Technol., vol. 38, no. 11, pp. 2872–2876, Jun. 2020, doi: .
[Crossref]

Kang, I.

I. Kang, “Phase-shift-keying and on-off-keying with improved performances using electroabsorption modulators with interferometric effects,” Opt. Exp., vol. 15, no. 4, pp. 1467–1473, 2007.

Kim, K.

A. Melikyan, N. Kaneda, K. Kim, Y. Baeyens, and P. Dong, “Differential drive I/Q modulator based on silicon photonic electro-absorption modulators,” J. Lightw. Technol., vol. 38, no. 11, pp. 2872–2876, Jun. 2020, doi: .
[Crossref]

Kimerling, L. C.

J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, “Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on an SOI platform,” Opt. Exp., vol. 15, no. 2, pp. 623–628, 2007.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett., vol. 26, no. 23, pp. 1888–1890, 2001.

Kitamura, R.

Kittlaus, E. A.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science, vol. 360, no. 6393, pp. 1113–1116, 2018.

Klein, E.

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Visible arrayed waveguide grating (400nm–700nm) for ultra-wide band (400–1700nm) integrated spectrometer for spectral tissue sensing,” in Proc. Eur. Conf. Lasers Electro-Opt. Eur. Quantum Electron. Conf. (CLEO/Europe-EQEC), 2017, Paper CK_3_1).

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” in Proc. IEEE 14th Int. Conf. Group IV Photon. (GFP), 2017, pp. 83–84.

Komljenovic, T.

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, no. 3, pp. 2511–2528, 2017.

Kumari, B.

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: A promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem., vol. 236, pp. 759–764, 2016.

Lambeck, P. V.

R. M. de Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron., vol. 4, no. 6, pp. 930–937, 1998.

Lawniczuk, K.

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” in Proc. IEEE 14th Int. Conf. Group IV Photon. (GFP), 2017, pp. 83–84.

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Visible arrayed waveguide grating (400nm–700nm) for ultra-wide band (400–1700nm) integrated spectrometer for spectral tissue sensing,” in Proc. Eur. Conf. Lasers Electro-Opt. Eur. Quantum Electron. Conf. (CLEO/Europe-EQEC), 2017, Paper CK_3_1).

Leake, G. L.

N. M. Fahrenkopf, C. McDonough, G. L. Leake, Z. Su, E. Timurdogan, and D. D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

Lee, K. K.

Leinse, A.

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Exp., vol. 19, no. 23, pp. 23162–23170, 2011.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018, doi: .

Levy, J. S.

Li, G.

G. Li, “Improving CMOS-compatible germanium photodetectors,” Opt. Exp., vol. 20, no. 24, pp. 26345–26350, 2012.

Li, G. Z.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2448–2449, 1995.

Li, M.

M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications,” Photon. Res., vol. 6, no. 2, pp. 109–116, 2018.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-Infrared and spectroscopic sensing,” ACS Nano, vol. 8, no. 7, pp. 6955–6961, 2014.

Li, X.

Liang, D.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, no. 3, pp. 1782–1802, 2010.

Lianxi, J.

J. Lianxi, “High efficient suspended coupler based on IME's MPW platform with 193nm lithography,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.

Liao, L.

L. Liao, “High speed silicon Mach-Zehnder modulator,” Opt. Exp., vol. 13, no. 8, pp. 3129–3135, 2005.

Liao, S.

S. Liao, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Exp., vol. 19, no. 11, pp. 10967–10972, 2011.

Liboiron-Ladouceur, O.

M. M. P. Fard, G. Cowan, and O. Liboiron-Ladouceur, “Responsivity optimization of a high-speed germanium-on-silicon photodetector,” Opt. Exp., vol. 24, no. 24, pp. 27738–27752, 2016.

Lim, A. E.-J.

A. E.-J. Lim, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 405–416, 2014.

Lim, D. R.

Lin, H.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-Infrared and spectroscopic sensing,” ACS Nano, vol. 8, no. 7, pp. 6955–6961, 2014.

Lin, J.

H. Sepehrian, J. Lin, L. A. Rusch, and W. Shi, “Silicon Photonic IQ Modulators for 400 Gb/s and Beyond,” J. Lightw. Technol., vol. 37, no. 13, pp. 3078–3086, 2019.

Liow, T.-Y.

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Exp., vol. 22, no. 18, pp. 21859–21865, 2014.

T.-Y. Liow, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 307–315, 2010.

Lipson, M.

B. Stern, X. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett., vol. 42, no. 21, pp. 4541–4544, 2017.

S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Exp., vol. 22, no. 22, pp. 26517–26525, 2014.

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Exp., vol. 21, no. 19, pp. 22829–22833, 2013.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Exp., vol. 20, no. 27, pp. 27999–28008, 2012.

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett., vol. 36, no. 17, pp. 3398–3400, 2011.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Exp., vol. 17, no. 6, pp. 4752–4757, 2009.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett., vol. 28, no. 15, pp. 1302–1304, 2003.

Lischke, S.

S. Lischke, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Exp., vol. 23, no. 21, pp. 27213–27220, 2015.

Liu, A.

A. Liu, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature, vol. 427, no. 6975, pp. 615–618, 2004.

Liu, E. K.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2448–2449, 1995.

Liu, J.

J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, “Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on an SOI platform,” Opt. Exp., vol. 15, no. 2, pp. 623–628, 2007.

Liu, X. D.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2448–2449, 1995.

Lo, G.-Q.

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol., vol. 33, no. 4, pp. 901–910, 2015.

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Exp., vol. 22, no. 18, pp. 21859–21865, 2014.

Loo, J.

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on silicon photonics,” Opt. Exp., vol. 23, no. 9, pp. 11975–11984, 2015.

Luan, H.-C.

H.-C. Luan, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett., vol. 75, no. 19, pp. 2909–2911, 1999.

Luke, K.

S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Exp., vol. 22, no. 22, pp. 26517–26525, 2014.

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Exp., vol. 21, no. 19, pp. 22829–22833, 2013.

Luo, X.

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Exp., vol. 22, no. 18, pp. 21859–21865, 2014.

Marpaung, D.

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Exp., vol. 19, no. 23, pp. 23162–23170, 2011.

Marris-Morini, D.

D. Marris-Morini, “A 40 Gbit/s optical link on a 300-mm silicon platform,” Opt. Exp., vol. 22, no. 6, pp. 6674–6679, 2014.

Martyshkin, D.

D. Martyshkin, “Visible-near-middle infrared spanning supercontinuum generation in a Silicon Nitride (Si3N4) waveguide,” Opt. Mater. Exp., vol. 9, no. 6, pp. 2553–2559, 2019.

McDonough, C.

N. M. Fahrenkopf, C. McDonough, G. L. Leake, Z. Su, E. Timurdogan, and D. D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

Melikyan, A.

A. Melikyan, N. Kaneda, K. Kim, Y. Baeyens, and P. Dong, “Differential drive I/Q modulator based on silicon photonic electro-absorption modulators,” J. Lightw. Technol., vol. 38, no. 11, pp. 2872–2876, Jun. 2020, doi: .
[Crossref]

Michel, J.

J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, “Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on an SOI platform,” Opt. Exp., vol. 15, no. 2, pp. 623–628, 2007.

Milesi, F.

D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fedeli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Exp., vol. 18, no. 18, pp. 19064–19069, 2010.

Miller, S.

S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Exp., vol. 22, no. 22, pp. 26517–26525, 2014.

Mobely, T.

S. Takahashi, K. Horiuchi, K. Tatsukoshi, M. Ono, N. Imajo, and T. Mobely, “Development of through glass via (TGV) formation technology using electrical discharging for 2.5/3D integrated packaging,” in Proc. IEEE 63rd Electron. Compon. Technol. Conf., 2013, pp. 348–352.

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett., vol. 38, no. 25, pp. 1669–1670, 2002.

Muñoz, P.

P. Muñoz, “Foundry developments toward Silicon Nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–13, 2019.

Namavar, F.

A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightw. Technol., vol. 12, no. 10, pp. 1771–1776, 1994.

Noda, S.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature, vol. 498, no. 7455, pp. 470–474, 2013.

Ohno, F.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 2R, p. 646, 2004.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 5B, pp. L673–L675, 2004.

Okawachi, Y.

S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Exp., vol. 22, no. 22, pp. 26517–26525, 2014.

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett., vol. 36, no. 17, pp. 3398–3400, 2011.

Ono, M.

S. Takahashi, K. Horiuchi, K. Tatsukoshi, M. Ono, N. Imajo, and T. Mobely, “Development of through glass via (TGV) formation technology using electrical discharging for 2.5/3D integrated packaging,” in Proc. IEEE 63rd Electron. Compon. Technol. Conf., 2013, pp. 348–352.

Otterstrom, N. T.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science, vol. 360, no. 6393, pp. 1113–1116, 2018.

Padmaraju, K.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Exp., vol. 20, no. 27, pp. 27999–28008, 2012.

Pal, B. P.

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: A promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem., vol. 236, pp. 759–764, 2016.

Pan, D.

J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, “Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on an SOI platform,” Opt. Exp., vol. 15, no. 2, pp. 623–628, 2007.

Panepucci, R. R.

Patel, D.

D. Patel, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Exp., vol. 23, no. 11, pp. 14263–14287, 2015.

Peters, J. D.

Y. Tang, J. D. Peters, and J. E. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Exp., vol. 20, no. 10, pp. 11529–11535, 2012.

Pfeiffer, M. H. P.

M. H. P. Pfeiffer, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4, pp. 1–11, 2018.

M. H. P. Pfeiffer, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica, vol. 3, no. 1, pp. 20–25, 2016.

Pilon, L.

Poitras, C. B.

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Exp., vol. 21, no. 19, pp. 22829–22833, 2013.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Exp., vol. 17, no. 6, pp. 4752–4757, 2009.

Poon, J. K. S.

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol., vol. 33, no. 4, pp. 901–910, 2015.

Poulton, C. V.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

Presting, H.

H. Presting, “Ultrathin SimGen strained layer superlattices-a step towards Si optoelectronics,” Semicond. Sci. Technol., vol. 7, no. 9, pp. 1127–1148, 1992.

Preston, K.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Exp., vol. 17, no. 6, pp. 4752–4757, 2009.

Rahim, A.

A. Rahim, T. Spuesens, R. Baets, and W. Bogaerts, “Open-access silicon photonics: Current status and emerging initiatives,” Proc. IEEE, vol. 106, no. 12, pp. 2313–2330, 2018.

A. Rahim, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Lightw. Technol., vol. 35, no. 4, pp. 639–649, 2017.

Rakich, P. T.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science, vol. 360, no. 6393, pp. 1113–1116, 2018.

Reed, G. T.

D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fedeli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Exp., vol. 18, no. 18, pp. 19064–19069, 2010.

G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today, vol. 8, no. 1, pp. 40–50, 2005.

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett., vol. 31, no. 6, pp. 451–452, 1995.

A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightw. Technol., vol. 12, no. 10, pp. 1771–1776, 1994.

Rendina, I.

M. Iodice, F. G. D. Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng., vol. 42, no. 1, pp. 169–175, 2003.

Rickman, A. G.

A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightw. Technol., vol. 12, no. 10, pp. 1771–1776, 1994.

Robinson, J. T.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Exp., vol. 17, no. 6, pp. 4752–4757, 2009.

Roelkens, G.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, no. 3, pp. 1782–1802, 2010.

Roeloffzen, C.

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Exp., vol. 19, no. 23, pp. 23162–23170, 2011.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018, doi: .

Roeloffzen, C. G. H.

C. G. H. Roeloffzen, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4, pp. 1–21, 2018.

Rong, H.

H. Rong, “A continuous-wave Raman silicon laser,” Nature, vol. 433, no. 7027, pp. 725–728, 2005.

Rusch, L. A.

H. Sepehrian, J. Lin, L. A. Rusch, and W. Shi, “Silicon Photonic IQ Modulators for 400 Gb/s and Beyond,” J. Lightw. Technol., vol. 37, no. 13, pp. 3078–3086, 2019.

Sacher, W. D.

W. D. Sacher, “Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers,” Opt. Exp., vol. 27, no. 26, pp. 37400–37418, 2019.

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol., vol. 33, no. 4, pp. 901–910, 2015.

Saha, K.

Sakai, A.

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron., vol. E85-C, no. 4, pp. 1033–1038, 2002.

Sakai, A. S. A.

A. S. A. Sakai, G. H. G. Hara, and T. B. T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” JPN. J. Appl. Phys., vol. 40, no. 4B, 2001, Paper L383.

Sarro, P. M.

M. Iodice, F. G. D. Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng., vol. 42, no. 1, pp. 169–175, 2003.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

Seok, T. J.

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on silicon photonics,” Opt. Exp., vol. 23, no. 9, pp. 11975–11984, 2015.

Sepehrian, H.

H. Sepehrian, J. Lin, L. A. Rusch, and W. Shi, “Silicon Photonic IQ Modulators for 400 Gb/s and Beyond,” J. Lightw. Technol., vol. 37, no. 13, pp. 3078–3086, 2019.

Shen, Y.

Y. Shen, “Deep learning with coherent nanophotonic circuits,” Nature Photon., vol. 11, no. 7, pp. 441–446, 2017.

Shi, W.

H. Sepehrian, J. Lin, L. A. Rusch, and W. Shi, “Silicon Photonic IQ Modulators for 400 Gb/s and Beyond,” J. Lightw. Technol., vol. 37, no. 13, pp. 3078–3086, 2019.

Shin, J.

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett., vol. 38, no. 25, pp. 1669–1670, 2002.

Sibson, P.

P. Sibson, “Chip-based quantum key distribution,” Nature Commun., vol. 8, no. 1, pp. 1–6, 2017.

Song, J.

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Exp., vol. 22, no. 18, pp. 21859–21865, 2014.

Soref, R.

R. Soref, “Mid-infrared photonics in Silicon and Germanium,” Nat. Photon., vol. 4, no. 8, 2010, Art. no. .

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1678–1687, 2006.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129, 1987.

Splett, A.

A. Splett, “Integration of waveguides and photodetectors in SiGe for 1.3 μm operation,” IEEE Photon. Technol. Lett., vol. 6, no. 1, pp. 59–61, 1994.

Spuesens, T.

A. Rahim, T. Spuesens, R. Baets, and W. Bogaerts, “Open-access silicon photonics: Current status and emerging initiatives,” Proc. IEEE, vol. 106, no. 12, pp. 2313–2330, 2018.

Srinivasan, S. A.

S. A. Srinivasan, “56 Gb/s germanium waveguide electro-absorption modulator,” J. Lightw. Technol., vol. 34, no. 2, pp. 419–424, 2016.

Stern, B.

Su, Z.

N. M. Fahrenkopf, C. McDonough, G. L. Leake, Z. Su, E. Timurdogan, and D. D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

Subramanian, A. Z.

A. Z. Subramanian, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J, vol. 5, no. 6, pp. 2202809–2202809, 2013.

Sun, J.

J. Sun, “A 128 Gb/s PAM4 Silicon Microring Modulator,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, 2018, Paper Th4A.7.

Taillaert, D.

Tait, A. N.

A. N. Tait, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017.

Takahashi, S.

S. Takahashi, K. Horiuchi, K. Tatsukoshi, M. Ono, N. Imajo, and T. Mobely, “Development of through glass via (TGV) formation technology using electrical discharging for 2.5/3D integrated packaging,” in Proc. IEEE 63rd Electron. Compon. Technol. Conf., 2013, pp. 348–352.

Takahashi, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature, vol. 498, no. 7455, pp. 470–474, 2013.

Tang, C. K.

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett., vol. 31, no. 6, pp. 451–452, 1995.

Tang, Y.

Y. Tang, J. D. Peters, and J. E. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Exp., vol. 20, no. 10, pp. 11529–11535, 2012.

Tatsukoshi, K.

S. Takahashi, K. Horiuchi, K. Tatsukoshi, M. Ono, N. Imajo, and T. Mobely, “Development of through glass via (TGV) formation technology using electrical discharging for 2.5/3D integrated packaging,” in Proc. IEEE 63rd Electron. Compon. Technol. Conf., 2013, pp. 348–352.

Terawaki, R.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature, vol. 498, no. 7455, pp. 470–474, 2013.

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fedeli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Exp., vol. 18, no. 18, pp. 19064–19069, 2010.

Timurdogan, E.

N. M. Fahrenkopf, C. McDonough, G. L. Leake, Z. Su, E. Timurdogan, and D. D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

Trinh, P. D.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 940–942, 1997.

P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulator,” Electron. Lett., vol. 31, no. 24, pp. 2097–2098, 1995.

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett., vol. 38, no. 25, pp. 1669–1670, 2002.

Tu, X.

X. Tu, “Silicon optical modulator with shield coplanar waveguide electrodes,” Opt. Exp., vol. 22, no. 19, pp. 23724–23731, 2014.

X. Tu, “50-Gb/s silicon Mach-Zehnder interferometer-based optical modulator with only 1.3 Vpp driving voltages,” in Proc. IEEE 16th Electron. Packag. Technol. Conf., 2014, pp. 851–854.

van Rees, A.

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Visible arrayed waveguide grating (400nm–700nm) for ultra-wide band (400–1700nm) integrated spectrometer for spectral tissue sensing,” in Proc. Eur. Conf. Lasers Electro-Opt. Eur. Quantum Electron. Conf. (CLEO/Europe-EQEC), 2017, Paper CK_3_1).

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” in Proc. IEEE 14th Int. Conf. Group IV Photon. (GFP), 2017, pp. 83–84.

Varshney, R. K.

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: A promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem., vol. 236, pp. 759–764, 2016.

Vermeulen, D.

D. Vermeulen, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-on-insulator platform,” Opt. Exp., vol. 18, no. 17, pp. 18278–18283, 2010.

Virot, L.

L. Virot, “Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction,” Opt. Exp., vol. 25, no. 16, pp. 19487–19496, 2017.

Vivien, L.

L. Vivien, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Exp., vol. 17, no. 8, pp. 6252–6257, 2009.

Wada, K.

J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, “Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on an SOI platform,” Opt. Exp., vol. 15, no. 2, pp. 623–628, 2007.

Wang, J.

J. Zhou, J. Wang, L. Zhu, and Q. Zhang, “High baud rate all-silicon photonics carrier depletion modulators,” J. Lightw. Technol., vol. 38, no. 2, pp. 272–281, 2020.

J. Wang, “Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode,” Photon. Res., vol. 3, no. 3, pp. 58–62, 2015.

J. Zhou, J. Wang, L. Zhu, Q. Zhang, Q. Zhang, and J. Hong, “Silicon photonics carrier depletion modulators capable of 85Gbaud 16QAM and 64Gbaud 64QAM,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper Tu2H.2.

J. Wang, “Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, pp. 1–3.

Wang, L.

Wang, Z.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science, vol. 360, no. 6393, pp. 1113–1116, 2018.

Warhoff, K.

R. M. de Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron., vol. 4, no. 6, pp. 930–937, 1998.

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett., vol. 38, no. 25, pp. 1669–1670, 2002.

Webster, M.

M. Webster, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in Proc. 11th Int. Conf. Group IV Photon., 2014, pp. 1–2.

Wen, Y. H.

Wu, M. C.

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on silicon photonics,” Opt. Exp., vol. 23, no. 9, pp. 11975–11984, 2015.

Xiao, X.

Xu, D.-X.

D.-X. Xu, “Silicon photonic integration platform—have we found the sweet spot?,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 189–205, 2014.

Xu, H.

H. Xu, “High speed silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Exp., vol. 20, no. 14, pp. 15093–15099, 2012.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett., vol. 38, no. 25, pp. 1669–1670, 2002.

Yegnanarayanan, S.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 940–942, 1997.

P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulator,” Electron. Lett., vol. 31, no. 24, pp. 2097–2098, 1995.

Yin, T.

T. Yin, “31GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Exp., vol. 15, no. 21, pp. 13965–13971, 2007.

Yong, Z.

Z. Yong, “U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band,” Opt. Exp., vol. 25, no. 7, pp. 8425–8439, 2017.

Yu, S.

Zhang, Q.

J. Zhou, J. Wang, L. Zhu, and Q. Zhang, “High baud rate all-silicon photonics carrier depletion modulators,” J. Lightw. Technol., vol. 38, no. 2, pp. 272–281, 2020.

J. Zhou, J. Wang, L. Zhu, Q. Zhang, Q. Zhang, and J. Hong, “Silicon photonics carrier depletion modulators capable of 85Gbaud 16QAM and 64Gbaud 64QAM,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper Tu2H.2.

J. Zhou, J. Wang, L. Zhu, Q. Zhang, Q. Zhang, and J. Hong, “Silicon photonics carrier depletion modulators capable of 85Gbaud 16QAM and 64Gbaud 64QAM,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper Tu2H.2.

Zhang, X.

X. Zhang, “Heterogeneous vol.2.5D integration on through silicon interposer,” Appl. Phys. Rev., vol. 2, no. 2, 2015, Art. no. .

Zhang, Y.

Y. Zhang, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Exp., vol. 22, no. 9, pp. 11367–11375, 2014.

Zhao, C. Z.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2448–2449, 1995.

Zhao, H.

Zhou, G.

G. Zhou, “Silicon Mach-Zehnder modulator using a highly-efficient L-shape PN junction,” in Proc. 10th Int. Conf. Inf. Opt. Photon., 2018, Art. no. .

Zhou, J.

J. Zhou, J. Wang, L. Zhu, and Q. Zhang, “High baud rate all-silicon photonics carrier depletion modulators,” J. Lightw. Technol., vol. 38, no. 2, pp. 272–281, 2020.

J. Zhou, J. Wang, L. Zhu, Q. Zhang, Q. Zhang, and J. Hong, “Silicon photonics carrier depletion modulators capable of 85Gbaud 16QAM and 64Gbaud 64QAM,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper Tu2H.2.

Zhu, L.

J. Zhou, J. Wang, L. Zhu, and Q. Zhang, “High baud rate all-silicon photonics carrier depletion modulators,” J. Lightw. Technol., vol. 38, no. 2, pp. 272–281, 2020.

J. Zhou, J. Wang, L. Zhu, Q. Zhang, Q. Zhang, and J. Hong, “Silicon photonics carrier depletion modulators capable of 85Gbaud 16QAM and 64Gbaud 64QAM,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper Tu2H.2.

Zhuang, L.

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Exp., vol. 19, no. 23, pp. 23162–23170, 2011.

ACS Nano (1)

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-Infrared and spectroscopic sensing,” ACS Nano, vol. 8, no. 7, pp. 6955–6961, 2014.

AIM Photon. (1)

“AIM photonics,” AIM Photon., Accessed: May 08, 2020. [Online]. Available: http://www.aimphotonics.com

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2448–2449, 1995.

H.-C. Luan, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett., vol. 75, no. 19, pp. 2909–2911, 1999.

Appl. Phys. Rev. (1)

X. Zhang, “Heterogeneous vol.2.5D integration on through silicon interposer,” Appl. Phys. Rev., vol. 2, no. 2, 2015, Art. no. .

Appl. Sci. (2)

L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, 2016, Art. no. .

L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, 2016, Art. no. .

Electron. Lett. (3)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett., vol. 38, no. 25, pp. 1669–1670, 2002.

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett., vol. 31, no. 6, pp. 451–452, 1995.

P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulator,” Electron. Lett., vol. 31, no. 24, pp. 2097–2098, 1995.

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129, 1987.

IEEE J. Sel. Topics Quantum Electron. (12)

A. E.-J. Lim, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 405–416, 2014.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1678–1687, 2006.

D.-X. Xu, “Silicon photonic integration platform—have we found the sweet spot?,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 189–205, 2014.

N. M. Fahrenkopf, C. McDonough, G. L. Leake, Z. Su, E. Timurdogan, and D. D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

K. Giewont, “300-mm monolithic silicon photonics foundry technology,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–11, 2019.

T. Aalto, “Open-access 3-μm SOI waveguide platform for dense photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–9, 2019.

P. Muñoz, “Foundry developments toward Silicon Nitride photonics from visible to the mid-infrared,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–13, 2019.

C. G. H. Roeloffzen, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4, pp. 1–21, 2018.

M. Iqbal, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 3, pp. 654–661, 2010.

R. M. de Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron., vol. 4, no. 6, pp. 930–937, 1998.

M. H. P. Pfeiffer, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4, pp. 1–11, 2018.

T.-Y. Liow, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 307–315, 2010.

IEEE Photon. J (1)

A. Z. Subramanian, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J, vol. 5, no. 6, pp. 2202809–2202809, 2013.

IEEE Photon. Technol. Lett. (4)

C. Bellegarde, “Improvement of sidewall roughness of submicron SOI waveguides by hydrogen plasma and annealing,” IEEE Photon. Technol. Lett., vol. 30, no. 7, pp. 591–594, 2018.

A. Splett, “Integration of waveguides and photodetectors in SiGe for 1.3 μm operation,” IEEE Photon. Technol. Lett., vol. 6, no. 1, pp. 59–61, 1994.

P. Dumon, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1328–1330, 2004.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 940–942, 1997.

IEICE Trans. Electron. (1)

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron., vol. E85-C, no. 4, pp. 1033–1038, 2002.

J. Lightw. Technol. (10)

A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightw. Technol., vol. 12, no. 10, pp. 1771–1776, 1994.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4600–4615, 2006.

A. Rahim, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Lightw. Technol., vol. 35, no. 4, pp. 639–649, 2017.

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol., vol. 33, no. 4, pp. 901–910, 2015.

A. Melikyan, N. Kaneda, K. Kim, Y. Baeyens, and P. Dong, “Differential drive I/Q modulator based on silicon photonic electro-absorption modulators,” J. Lightw. Technol., vol. 38, no. 11, pp. 2872–2876, Jun. 2020, doi: .
[Crossref]

H. Sepehrian, J. Lin, L. A. Rusch, and W. Shi, “Silicon Photonic IQ Modulators for 400 Gb/s and Beyond,” J. Lightw. Technol., vol. 37, no. 13, pp. 3078–3086, 2019.

J. Zhou, J. Wang, L. Zhu, and Q. Zhang, “High baud rate all-silicon photonics carrier depletion modulators,” J. Lightw. Technol., vol. 38, no. 2, pp. 272–281, 2020.

R. Ding, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol., vol. 32, no. 12, pp. 2240–2247, 2014.

S. A. Srinivasan, “56 Gb/s germanium waveguide electro-absorption modulator,” J. Lightw. Technol., vol. 34, no. 2, pp. 419–424, 2016.

H. T. Chen, “High-responsivity low-voltage 28-Gb/s Ge p-i-n photodetector with silicon contacts,” J. Lightw. Technol., vol. 33, no. 4, pp. 820–824, 2015.

JPN. J. Appl. Phys. (3)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 2R, p. 646, 2004.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” JPN. J. Appl. Phys., vol. 43, no. 5B, pp. L673–L675, 2004.

A. S. A. Sakai, G. H. G. Hara, and T. B. T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” JPN. J. Appl. Phys., vol. 40, no. 4B, 2001, Paper L383.

Mater. Today (1)

G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today, vol. 8, no. 1, pp. 40–50, 2005.

Materials (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, no. 3, pp. 1782–1802, 2010.

Nat. Photon. (1)

R. Soref, “Mid-infrared photonics in Silicon and Germanium,” Nat. Photon., vol. 4, no. 8, 2010, Art. no. .

Nature (4)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature, vol. 498, no. 7455, pp. 470–474, 2013.

H. Rong, “A continuous-wave Raman silicon laser,” Nature, vol. 433, no. 7027, pp. 725–728, 2005.

A. Liu, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature, vol. 427, no. 6975, pp. 615–618, 2004.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

Nature Commun. (1)

P. Sibson, “Chip-based quantum key distribution,” Nature Commun., vol. 8, no. 1, pp. 1–6, 2017.

Nature Photon. (2)

Y. Shen, “Deep learning with coherent nanophotonic circuits,” Nature Photon., vol. 11, no. 7, pp. 441–446, 2017.

T. Hiraki, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nature Photon., vol. 11, no. 8, pp. 482–485, 2017.

Npj Quantum Inf. (1)

Y. Ding, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” Npj Quantum Inf., vol. 3, no. 1, pp. 1–7, 2017.

Opt. Eng. (1)

M. Iodice, F. G. D. Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng., vol. 42, no. 1, pp. 169–175, 2003.

Opt. Exp. (33)

D. Patel, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Exp., vol. 23, no. 11, pp. 14263–14287, 2015.

N. C. Harris, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Exp., vol. 22, no. 9, pp. 10487–10493, 2014.

Y. Tang, J. D. Peters, and J. E. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Exp., vol. 20, no. 10, pp. 11529–11535, 2012.

Y. Hu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Exp., vol. 20, no. 14, pp. 15079–15085, 2012.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Exp., vol. 20, no. 27, pp. 27999–28008, 2012.

Z. Yong, “U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band,” Opt. Exp., vol. 25, no. 7, pp. 8425–8439, 2017.

D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fedeli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Exp., vol. 18, no. 18, pp. 19064–19069, 2010.

H. Xu, “High speed silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Exp., vol. 20, no. 14, pp. 15093–15099, 2012.

I. Kang, “Phase-shift-keying and on-off-keying with improved performances using electroabsorption modulators with interferometric effects,” Opt. Exp., vol. 15, no. 4, pp. 1467–1473, 2007.

W. D. Sacher, “Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers,” Opt. Exp., vol. 27, no. 26, pp. 37400–37418, 2019.

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Exp., vol. 21, no. 19, pp. 22829–22833, 2013.

K. Goi, “Low-loss high-speed silicon IQ modulator for QPSK/DQPSK in C and L bands,” Opt. Exp., vol. 22, no. 9, pp. 10703–10709, 2014.

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, no. 3, pp. 2511–2528, 2017.

H. Chen, “-1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Exp., vol. 24, no. 5, pp. 4622–4631, 2016.

G. Li, “Improving CMOS-compatible germanium photodetectors,” Opt. Exp., vol. 20, no. 24, pp. 26345–26350, 2012.

Y. Zhang, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Exp., vol. 22, no. 9, pp. 11367–11375, 2014.

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on silicon photonics,” Opt. Exp., vol. 23, no. 9, pp. 11975–11984, 2015.

S. Lischke, “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Exp., vol. 23, no. 21, pp. 27213–27220, 2015.

L. Virot, “Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction,” Opt. Exp., vol. 25, no. 16, pp. 19487–19496, 2017.

D. Marris-Morini, “A 40 Gbit/s optical link on a 300-mm silicon platform,” Opt. Exp., vol. 22, no. 6, pp. 6674–6679, 2014.

S. Liao, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Exp., vol. 19, no. 11, pp. 10967–10972, 2011.

M. M. P. Fard, G. Cowan, and O. Liboiron-Ladouceur, “Responsivity optimization of a high-speed germanium-on-silicon photodetector,” Opt. Exp., vol. 24, no. 24, pp. 27738–27752, 2016.

X. Tu, “Silicon optical modulator with shield coplanar waveguide electrodes,” Opt. Exp., vol. 22, no. 19, pp. 23724–23731, 2014.

P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Exp., vol. 20, no. 6, pp. 6163–6169, 2012.

J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, “Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on an SOI platform,” Opt. Exp., vol. 15, no. 2, pp. 623–628, 2007.

T. Yin, “31GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Exp., vol. 15, no. 21, pp. 13965–13971, 2007.

L. Vivien, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Exp., vol. 17, no. 8, pp. 6252–6257, 2009.

L. Liao, “High speed silicon Mach-Zehnder modulator,” Opt. Exp., vol. 13, no. 8, pp. 3129–3135, 2005.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Exp., vol. 17, no. 6, pp. 4752–4757, 2009.

D. Vermeulen, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-on-insulator platform,” Opt. Exp., vol. 18, no. 17, pp. 18278–18283, 2010.

S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Exp., vol. 22, no. 22, pp. 26517–26525, 2014.

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Exp., vol. 22, no. 18, pp. 21859–21865, 2014.

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Exp., vol. 19, no. 23, pp. 23162–23170, 2011.

Opt. Lett. (8)

Opt. Mater. Exp. (1)

D. Martyshkin, “Visible-near-middle infrared spanning supercontinuum generation in a Silicon Nitride (Si3N4) waveguide,” Opt. Mater. Exp., vol. 9, no. 6, pp. 2553–2559, 2019.

Optica (1)

Photon. Res. (2)

Proc. IEEE (1)

A. Rahim, T. Spuesens, R. Baets, and W. Bogaerts, “Open-access silicon photonics: Current status and emerging initiatives,” Proc. IEEE, vol. 106, no. 12, pp. 2313–2330, 2018.

Sci. Rep. (1)

A. N. Tait, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017.

Science (1)

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science, vol. 360, no. 6393, pp. 1113–1116, 2018.

Semicond. Sci. Technol. (1)

H. Presting, “Ultrathin SimGen strained layer superlattices-a step towards Si optoelectronics,” Semicond. Sci. Technol., vol. 7, no. 9, pp. 1127–1148, 1992.

Sens. Actuators B Chem. (1)

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: A promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem., vol. 236, pp. 759–764, 2016.

Other (32)

“TriPleX: A versatile dielectric photonic platform in: Advanced Optical Technologies vol. 4 Issue 2 (2015),” Accessed: May 11, 2020. [Online]. Available: https://www.degruyter.com/view/journals/aot/4/2/article-p189.xml

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” in Proc. IEEE 14th Int. Conf. Group IV Photon. (GFP), 2017, pp. 83–84.

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Visible arrayed waveguide grating (400nm–700nm) for ultra-wide band (400–1700nm) integrated spectrometer for spectral tissue sensing,” in Proc. Eur. Conf. Lasers Electro-Opt. Eur. Quantum Electron. Conf. (CLEO/Europe-EQEC), 2017, Paper CK_3_1).

“AMF-QP-RND-011 AMF PDK3.1 User Manual V1,” 2020. [Online]. Available: http://www.advmf.com/

“Intel silicon photonics 100G PSM4 QSFP28 optical transceiver 96610,” Accessed: Aug. 27, 2020. [Online]. Available: https://www.intel.com/content/www/us/en/products/network-io/high-performance-fabrics/silicon-photonics/100g-psm4-qsfp28-optical-transceivers.html

“Services,” VLC Photon., 12, 2020. Accessed: Aug. 27, 2020. [Online]. Available: https://www.vlcphotonics.com/services/

“Yole silicon photonics market update,” Accessed: 01, 2020. [Online]. Available: http://www.yole.fr/PhotonicIC_SiPhotonics_MarketUpdate_Intel.aspx

“Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices - IEEE journals & magazine,” Accessed: Jul. 01, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8452165

“Phase-shift masks,” Accessed: Aug. 27, 2020. [Online]. Available: https://spie.org/publications/fg06_p78-80_phase-shift_masks?SSO=1

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018, doi: .

“IHP - SiGe:C BiCMOS technologies,” Accessed: Dec. 29, 2020. [Online]. Available: https://www.ihp-microelectronics.com/en/services/mpw-prototyping/sigec-bicmos-technologies.html

“Silicon photonic ICs for prototyping - Imec.” Accessed: May 08, 2020. [Online]. Available: https://www.imec-int.com/en/silicon-photonic-ICs-prototyping

“Si-photonics IC Si310-PHMP2M - CMP: Circuits multi-projets,” Accessed: May 08, 2020. [Online]. Available: https://mycmp.fr/datasheet/si-photonics-ic-si310-phmp2m

“Cornerstone,” CORNERSTONE is a License Free, Open Source Silicon Photon. Rapid Prototyping Foundry, Accessed: Aug. 27, 2020. [Online]. Available: https://www.cornerstone.sotonfab.co.uk/

J. Wang, “Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, pp. 1–3.

J. Lianxi, “High efficient suspended coupler based on IME's MPW platform with 193nm lithography,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.

S. Takahashi, K. Horiuchi, K. Tatsukoshi, M. Ono, N. Imajo, and T. Mobely, “Development of through glass via (TGV) formation technology using electrical discharging for 2.5/3D integrated packaging,” in Proc. IEEE 63rd Electron. Compon. Technol. Conf., 2013, pp. 348–352.

“Luxtera introduces industry's first 40G optical active cable, world's first CMOS photonics product,” 14, 2007. Accessed: Dec. 19, 2019. [Online]. Available: https://www.businesswire.com/news/home/20070814005195/en/Luxtera-Introduces-Industrys-40G-Optical-Active-Cable

“The History of Acacia,” Acacia Commun., Inc, Accessed: Dec. 19, 2019. [Online]. Available: https://acacia-inc.com/acacia-advantage/history/

I. Developer, “Silicon photonics market,” Ingenious e-Brain, Accessed: Dec. 19, 2019. [Online]. Available: https://www.iebrain.com/post/silicon-photonics-market/

“Silicon Photonics Market | Size, Share and Market Forecast to 2023 | MarketsandMarketsTM,” Accessed: Dec. 19, 2019. [Online]. Available: https://www.marketsandmarkets.com/Market-Reports/silicon-photonics-116.html

M. Bruel, “Process for the production of thin semiconductor material films,” U.S. Patent 5374564A, 20, 1994.

“Process design kit (PDK),” AIM Photon., [Online]. Available: http://www.aimphotonics.com/process-design-kit, Accessed: 20, 2020.

X. Tu, “50-Gb/s silicon Mach-Zehnder interferometer-based optical modulator with only 1.3 Vpp driving voltages,” in Proc. IEEE 16th Electron. Packag. Technol. Conf., 2014, pp. 851–854.

“OSA | Coplanar-waveguide-based silicon Mach–Zehnder modulator using a meandering optical waveguide and alternating-side PN junction loading,” Accessed: Apr. 15, 2020. [Online]. Available: https://www.osapublishing.org/ol/abstract.cfm?uri=ol-41-18-4401

J. Zhou, J. Wang, L. Zhu, Q. Zhang, Q. Zhang, and J. Hong, “Silicon photonics carrier depletion modulators capable of 85Gbaud 16QAM and 64Gbaud 64QAM,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper Tu2H.2.

M. Webster, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in Proc. 11th Int. Conf. Group IV Photon., 2014, pp. 1–2.

“Multi project wafer service >lionix international,” LioniX Int., 06, 2016. Accessed: May 11, 2020. [Online]. Available: https://photonics.lionix-international.com/mpw-service/

“Foundry,” LIGENTEC, Accessed: May 11, 2020. [Online]. Available: https://www.ligentec.com/ligentec-foundry/

“PIX4life – Bio-photonics pilot line,” Accessed: May 11, 2020. [Online]. Available: https://pix4life.eu/

J. Sun, “A 128 Gb/s PAM4 Silicon Microring Modulator,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, 2018, Paper Th4A.7.

G. Zhou, “Silicon Mach-Zehnder modulator using a highly-efficient L-shape PN junction,” in Proc. 10th Int. Conf. Inf. Opt. Photon., 2018, Art. no. .

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.