Abstract

Sensitivity of high-speed optical receivers is heavily influenced by the performance of the optical detectors used in the receivers, the data rate, and the target bit-error-rate (BER). A simulation model for sensitivity of optical receivers based on electron-avalanche photodiodes (e-APDs) is presented. It allows for the optimization of avalanche width and operating voltage to achieve the optimum receiver sensitivity for given bit rate and target BER. The effects modelled include inter-symbol interference (ISI), various dark current components (tunnelling, diffusion, and generation), current impulse duration, avalanche gain, and amplifier's noise. The model was demonstrated through simulations of Indium Arsenide (InAs) e-APDs. For $10^{-12}$ target BER, the receiver's sensitivities were found to be −30.6, −22.7, −19.2, and −16.6 dBm, for 10, 25, 40, and 50 Gb/s data rate, respectively. Desirable avalanche properties of InAs e-APDs are counteracted by detrimental effects of high dark currents. Hence InAs e-APDs with lower dark currents are required to be more competitive with other optical detector technologies for high-speed optical receivers. The data reported in this article is available from the ORDA digital repository (DOI: 10.15131/shef.data.9959468).

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Sun, M. Hayat, B. Saleh, and M. Teich, “Statistical correlation of gain and buildup time in APDs and its effects on receiver performance,” J. Lightw. Technol., vol. 24, no. 2, pp. 755–768,  2006.
  2. D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightw. Technol., vol. 27, no. 15, pp. 3294–3302,  2009.
  3. D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of high-speed lightwave system receivers using InAlAs avalanche photodiodes,” IEEE Photon. Technol. Lett., vol. 23, no. 4, pp. 233–235,  2011.
  4. A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2631–2638,  2010.
  5. J. Beck “The HgCdTe electron avalanche photodiode,” J. Electron. Mater., vol. 35, no. 6, pp. 1166–1173, 2006.
  6. B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 37, no. 9, pp. 1976–1984,  1990.
  7. E. Jamil, M. M. Hayat, and G. A. Keeler, “Analytical formulas for mean gain and excess noise factor in InAs avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 65, no. 2, pp. 610–614,  2018.
  8. J. S. Ng, “Effect of dead space on avalanche speed,” IEEE Trans. Electron Devices, vol. 49, no. 4, pp. 544–549,  2002.
  9. P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron., vol. 47, no. 8, pp. 1123–1128,  2011.
  10. S. R. Forrest, M. DiDomenico, R. G. Smith, and H. J. Stocker, “Evidence for tunneling in reverse-biased III-V photodetector diodes,” Appl. Phys. Lett., vol. 36, no. 7, pp. 580–582, 1980.
  11. R Piessens, Quadpack: A Subroutine Package for Automatic Integration. Berlin, Germany: Springer-Verlag, 1983.
  12. H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10-Gb/s optical communication systems,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1303–1308,  2001.
  13. ADSANTEC, “ASNT6123 25 Gbps Dual Transimpedance Amplifier,” 2010.
  14. S.-T. Chou, S.-H. Huang, Z.-H. Hon, and W.-Z. Chen, “A 40 Gbps optical receiver analog front-end in 65 nm CMOS,” in Proc. IEEE Int. Symp. Circuits Syst., May 2012, pp. 1736–1739.
  15. ADSANTEC, ASNT6122-BD 50 Gbps Linear/Limiting TIA. 2017.
  16. W. Nakwaski, “Effective masses of electrons and heavy holes in GaAs, InAs, AlAs and their ternary compounds,” Physica B, Condensed Matter, vol. 210, pp. 1–25, 1995.
  17. A. R. Marshall, “The InAs electron avalanche photodiode and the influence of thin avalanche photodiodes on receiver sensitivity,” Ph.D. Thesis, Univ. Sheffield, Sheffield, U.K., 2009.
  18. K. Brennan and K. Hess, “High field transport in GaAs, InP and InAs,” Solid-State Electron., vol. 27, no. 4, pp. 347–357, 1984.
  19. V. L. Dalal, “Hole velocity in p -GaAs,” Appl. Phys. Lett., vol. 16, pp. 489–491, 1970.
  20. M. V. Fischetti, “Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport,” IEEE Trans. Electron Devices, vol. 38, no. 3, pp. 634–649,  1991.
  21. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. 3rd ed. Hoboken, NJ, USA: Wiley-Interscience, 2007.
  22. R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys., vol. 38, pp. 3705–3714, 1967.
  23. K. Shiba, T. Nakata, T. Takeuchi, T. Sasaki, and K. Makita, “10 Gbit/s asymmetric waveguide APD with high sensitivity of -30 dBm,” Electron. Lett., vol. 42, no. 20, pp. 1177–1178, 2006.
  24. M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “High-sensitivity 25 Gbit/s avalanche photodiode receiver optical sub-assembly for 40 km transmission,” Electron. Lett., vol. 48, no. 13, pp. 777–778, 2012.
  25. Z. Huang, “25 Gbps low-voltage waveguide SiGe avalanche photodiode,” Optica, vol. 3, pp. 793–798, 2016.
  26. C. Caillaud, “Integrated SOA-PIN detector for high-speed short reach applications,” J. Lightw. Technol., vol. 33, pp. 1596–1601, 2015.
  27. P. Angelini, “Record −22.5-dBm sensitivity SOA-PIN-TIA photoreceiver module for 40-Gb/s applications,” IEEE Photon. Technol. Lett., vol. 27, no. 19, pp. 2027–2030,  2015.
  28. S. Takashima, H. Nakagawa, S. Kim, F. Goto, M. Okayasu, and H. Inoue, “40-Gbit/s receiver with −21 dBm sensitivity employing filterless semiconductor optical amplifier,” in Proc. OFC Opt. Fiber Commun. Conf., vol. 2, 2003, pp. 471–472.

2018 (1)

E. Jamil, M. M. Hayat, and G. A. Keeler, “Analytical formulas for mean gain and excess noise factor in InAs avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 65, no. 2, pp. 610–614,  2018.

2017 (1)

ADSANTEC, ASNT6122-BD 50 Gbps Linear/Limiting TIA. 2017.

2016 (1)

2015 (2)

C. Caillaud, “Integrated SOA-PIN detector for high-speed short reach applications,” J. Lightw. Technol., vol. 33, pp. 1596–1601, 2015.

P. Angelini, “Record −22.5-dBm sensitivity SOA-PIN-TIA photoreceiver module for 40-Gb/s applications,” IEEE Photon. Technol. Lett., vol. 27, no. 19, pp. 2027–2030,  2015.

2012 (1)

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “High-sensitivity 25 Gbit/s avalanche photodiode receiver optical sub-assembly for 40 km transmission,” Electron. Lett., vol. 48, no. 13, pp. 777–778, 2012.

2011 (2)

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron., vol. 47, no. 8, pp. 1123–1128,  2011.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of high-speed lightwave system receivers using InAlAs avalanche photodiodes,” IEEE Photon. Technol. Lett., vol. 23, no. 4, pp. 233–235,  2011.

2010 (2)

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2631–2638,  2010.

ADSANTEC, “ASNT6123 25 Gbps Dual Transimpedance Amplifier,” 2010.

2009 (1)

D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightw. Technol., vol. 27, no. 15, pp. 3294–3302,  2009.

2006 (3)

P. Sun, M. Hayat, B. Saleh, and M. Teich, “Statistical correlation of gain and buildup time in APDs and its effects on receiver performance,” J. Lightw. Technol., vol. 24, no. 2, pp. 755–768,  2006.

J. Beck “The HgCdTe electron avalanche photodiode,” J. Electron. Mater., vol. 35, no. 6, pp. 1166–1173, 2006.

K. Shiba, T. Nakata, T. Takeuchi, T. Sasaki, and K. Makita, “10 Gbit/s asymmetric waveguide APD with high sensitivity of -30 dBm,” Electron. Lett., vol. 42, no. 20, pp. 1177–1178, 2006.

2002 (1)

J. S. Ng, “Effect of dead space on avalanche speed,” IEEE Trans. Electron Devices, vol. 49, no. 4, pp. 544–549,  2002.

2001 (1)

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10-Gb/s optical communication systems,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1303–1308,  2001.

1995 (1)

W. Nakwaski, “Effective masses of electrons and heavy holes in GaAs, InAs, AlAs and their ternary compounds,” Physica B, Condensed Matter, vol. 210, pp. 1–25, 1995.

1991 (1)

M. V. Fischetti, “Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport,” IEEE Trans. Electron Devices, vol. 38, no. 3, pp. 634–649,  1991.

1990 (1)

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 37, no. 9, pp. 1976–1984,  1990.

1984 (1)

K. Brennan and K. Hess, “High field transport in GaAs, InP and InAs,” Solid-State Electron., vol. 27, no. 4, pp. 347–357, 1984.

1980 (1)

S. R. Forrest, M. DiDomenico, R. G. Smith, and H. J. Stocker, “Evidence for tunneling in reverse-biased III-V photodetector diodes,” Appl. Phys. Lett., vol. 36, no. 7, pp. 580–582, 1980.

1970 (1)

V. L. Dalal, “Hole velocity in p -GaAs,” Appl. Phys. Lett., vol. 16, pp. 489–491, 1970.

1967 (1)

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys., vol. 38, pp. 3705–3714, 1967.

Angelini, P.

P. Angelini, “Record −22.5-dBm sensitivity SOA-PIN-TIA photoreceiver module for 40-Gb/s applications,” IEEE Photon. Technol. Lett., vol. 27, no. 19, pp. 2027–2030,  2015.

Beck, J.

J. Beck “The HgCdTe electron avalanche photodiode,” J. Electron. Mater., vol. 35, no. 6, pp. 1166–1173, 2006.

Brennan, K.

K. Brennan and K. Hess, “High field transport in GaAs, InP and InAs,” Solid-State Electron., vol. 27, no. 4, pp. 347–357, 1984.

Caillaud, C.

C. Caillaud, “Integrated SOA-PIN detector for high-speed short reach applications,” J. Lightw. Technol., vol. 33, pp. 1596–1601, 2015.

Chen, W.-Z.

S.-T. Chou, S.-H. Huang, Z.-H. Hon, and W.-Z. Chen, “A 40 Gbps optical receiver analog front-end in 65 nm CMOS,” in Proc. IEEE Int. Symp. Circuits Syst., May 2012, pp. 1736–1739.

Chou, S.-T.

S.-T. Chou, S.-H. Huang, Z.-H. Hon, and W.-Z. Chen, “A 40 Gbps optical receiver analog front-end in 65 nm CMOS,” in Proc. IEEE Int. Symp. Circuits Syst., May 2012, pp. 1736–1739.

Dalal, V. L.

V. L. Dalal, “Hole velocity in p -GaAs,” Appl. Phys. Lett., vol. 16, pp. 489–491, 1970.

David, J.

D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightw. Technol., vol. 27, no. 15, pp. 3294–3302,  2009.

David, J. P. R.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of high-speed lightwave system receivers using InAlAs avalanche photodiodes,” IEEE Photon. Technol. Lett., vol. 23, no. 4, pp. 233–235,  2011.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron., vol. 47, no. 8, pp. 1123–1128,  2011.

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2631–2638,  2010.

DiDomenico, M.

S. R. Forrest, M. DiDomenico, R. G. Smith, and H. J. Stocker, “Evidence for tunneling in reverse-biased III-V photodetector diodes,” Appl. Phys. Lett., vol. 36, no. 7, pp. 580–582, 1980.

Emmons, R. B.

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys., vol. 38, pp. 3705–3714, 1967.

Fischetti, M. V.

M. V. Fischetti, “Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport,” IEEE Trans. Electron Devices, vol. 38, no. 3, pp. 634–649,  1991.

Forrest, S. R.

S. R. Forrest, M. DiDomenico, R. G. Smith, and H. J. Stocker, “Evidence for tunneling in reverse-biased III-V photodetector diodes,” Appl. Phys. Lett., vol. 36, no. 7, pp. 580–582, 1980.

Goto, F.

S. Takashima, H. Nakagawa, S. Kim, F. Goto, M. Okayasu, and H. Inoue, “40-Gbit/s receiver with −21 dBm sensitivity employing filterless semiconductor optical amplifier,” in Proc. OFC Opt. Fiber Commun. Conf., vol. 2, 2003, pp. 471–472.

Hayat, M.

P. Sun, M. Hayat, B. Saleh, and M. Teich, “Statistical correlation of gain and buildup time in APDs and its effects on receiver performance,” J. Lightw. Technol., vol. 24, no. 2, pp. 755–768,  2006.

Hayat, M. M.

E. Jamil, M. M. Hayat, and G. A. Keeler, “Analytical formulas for mean gain and excess noise factor in InAs avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 65, no. 2, pp. 610–614,  2018.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of high-speed lightwave system receivers using InAlAs avalanche photodiodes,” IEEE Photon. Technol. Lett., vol. 23, no. 4, pp. 233–235,  2011.

D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightw. Technol., vol. 27, no. 15, pp. 3294–3302,  2009.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 37, no. 9, pp. 1976–1984,  1990.

Hess, K.

K. Brennan and K. Hess, “High field transport in GaAs, InP and InAs,” Solid-State Electron., vol. 27, no. 4, pp. 347–357, 1984.

Hon, Z.-H.

S.-T. Chou, S.-H. Huang, Z.-H. Hon, and W.-Z. Chen, “A 40 Gbps optical receiver analog front-end in 65 nm CMOS,” in Proc. IEEE Int. Symp. Circuits Syst., May 2012, pp. 1736–1739.

Huang, S.-H.

S.-T. Chou, S.-H. Huang, Z.-H. Hon, and W.-Z. Chen, “A 40 Gbps optical receiver analog front-end in 65 nm CMOS,” in Proc. IEEE Int. Symp. Circuits Syst., May 2012, pp. 1736–1739.

Huang, Z.

Ichioka, T.

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10-Gb/s optical communication systems,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1303–1308,  2001.

Ikeda, H.

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10-Gb/s optical communication systems,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1303–1308,  2001.

Inoue, H.

S. Takashima, H. Nakagawa, S. Kim, F. Goto, M. Okayasu, and H. Inoue, “40-Gbit/s receiver with −21 dBm sensitivity employing filterless semiconductor optical amplifier,” in Proc. OFC Opt. Fiber Commun. Conf., vol. 2, 2003, pp. 471–472.

Ishibashi, T.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “High-sensitivity 25 Gbit/s avalanche photodiode receiver optical sub-assembly for 40 km transmission,” Electron. Lett., vol. 48, no. 13, pp. 777–778, 2012.

Jamil, E.

E. Jamil, M. M. Hayat, and G. A. Keeler, “Analytical formulas for mean gain and excess noise factor in InAs avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 65, no. 2, pp. 610–614,  2018.

Keeler, G. A.

E. Jamil, M. M. Hayat, and G. A. Keeler, “Analytical formulas for mean gain and excess noise factor in InAs avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 65, no. 2, pp. 610–614,  2018.

Ker, P. J.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron., vol. 47, no. 8, pp. 1123–1128,  2011.

Kim, S.

S. Takashima, H. Nakagawa, S. Kim, F. Goto, M. Okayasu, and H. Inoue, “40-Gbit/s receiver with −21 dBm sensitivity employing filterless semiconductor optical amplifier,” in Proc. OFC Opt. Fiber Commun. Conf., vol. 2, 2003, pp. 471–472.

Kimura, T.

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10-Gb/s optical communication systems,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1303–1308,  2001.

Kodama, S.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “High-sensitivity 25 Gbit/s avalanche photodiode receiver optical sub-assembly for 40 km transmission,” Electron. Lett., vol. 48, no. 13, pp. 777–778, 2012.

Krysa, A. B.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron., vol. 47, no. 8, pp. 1123–1128,  2011.

Makita, K.

K. Shiba, T. Nakata, T. Takeuchi, T. Sasaki, and K. Makita, “10 Gbit/s asymmetric waveguide APD with high sensitivity of -30 dBm,” Electron. Lett., vol. 42, no. 20, pp. 1177–1178, 2006.

Marshall, A. R.

A. R. Marshall, “The InAs electron avalanche photodiode and the influence of thin avalanche photodiodes on receiver sensitivity,” Ph.D. Thesis, Univ. Sheffield, Sheffield, U.K., 2009.

Marshall, A. R. J.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron., vol. 47, no. 8, pp. 1123–1128,  2011.

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2631–2638,  2010.

Muramoto, Y.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “High-sensitivity 25 Gbit/s avalanche photodiode receiver optical sub-assembly for 40 km transmission,” Electron. Lett., vol. 48, no. 13, pp. 777–778, 2012.

Nada, M.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “High-sensitivity 25 Gbit/s avalanche photodiode receiver optical sub-assembly for 40 km transmission,” Electron. Lett., vol. 48, no. 13, pp. 777–778, 2012.

Nakagawa, H.

S. Takashima, H. Nakagawa, S. Kim, F. Goto, M. Okayasu, and H. Inoue, “40-Gbit/s receiver with −21 dBm sensitivity employing filterless semiconductor optical amplifier,” in Proc. OFC Opt. Fiber Commun. Conf., vol. 2, 2003, pp. 471–472.

Nakata, T.

K. Shiba, T. Nakata, T. Takeuchi, T. Sasaki, and K. Makita, “10 Gbit/s asymmetric waveguide APD with high sensitivity of -30 dBm,” Electron. Lett., vol. 42, no. 20, pp. 1177–1178, 2006.

Nakwaski, W.

W. Nakwaski, “Effective masses of electrons and heavy holes in GaAs, InAs, AlAs and their ternary compounds,” Physica B, Condensed Matter, vol. 210, pp. 1–25, 1995.

Ng, J. S.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of high-speed lightwave system receivers using InAlAs avalanche photodiodes,” IEEE Photon. Technol. Lett., vol. 23, no. 4, pp. 233–235,  2011.

D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightw. Technol., vol. 27, no. 15, pp. 3294–3302,  2009.

J. S. Ng, “Effect of dead space on avalanche speed,” IEEE Trans. Electron Devices, vol. 49, no. 4, pp. 544–549,  2002.

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. 3rd ed. Hoboken, NJ, USA: Wiley-Interscience, 2007.

Ohshima, T.

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10-Gb/s optical communication systems,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1303–1308,  2001.

Okayasu, M.

S. Takashima, H. Nakagawa, S. Kim, F. Goto, M. Okayasu, and H. Inoue, “40-Gbit/s receiver with −21 dBm sensitivity employing filterless semiconductor optical amplifier,” in Proc. OFC Opt. Fiber Commun. Conf., vol. 2, 2003, pp. 471–472.

Ong, D. S. G.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of high-speed lightwave system receivers using InAlAs avalanche photodiodes,” IEEE Photon. Technol. Lett., vol. 23, no. 4, pp. 233–235,  2011.

D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightw. Technol., vol. 27, no. 15, pp. 3294–3302,  2009.

Piessens, R

R Piessens, Quadpack: A Subroutine Package for Automatic Integration. Berlin, Germany: Springer-Verlag, 1983.

Saleh, B.

P. Sun, M. Hayat, B. Saleh, and M. Teich, “Statistical correlation of gain and buildup time in APDs and its effects on receiver performance,” J. Lightw. Technol., vol. 24, no. 2, pp. 755–768,  2006.

Saleh, B. E. A.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 37, no. 9, pp. 1976–1984,  1990.

Sasaki, T.

K. Shiba, T. Nakata, T. Takeuchi, T. Sasaki, and K. Makita, “10 Gbit/s asymmetric waveguide APD with high sensitivity of -30 dBm,” Electron. Lett., vol. 42, no. 20, pp. 1177–1178, 2006.

Shiba, K.

K. Shiba, T. Nakata, T. Takeuchi, T. Sasaki, and K. Makita, “10 Gbit/s asymmetric waveguide APD with high sensitivity of -30 dBm,” Electron. Lett., vol. 42, no. 20, pp. 1177–1178, 2006.

Smith, R. G.

S. R. Forrest, M. DiDomenico, R. G. Smith, and H. J. Stocker, “Evidence for tunneling in reverse-biased III-V photodetector diodes,” Appl. Phys. Lett., vol. 36, no. 7, pp. 580–582, 1980.

Stocker, H. J.

S. R. Forrest, M. DiDomenico, R. G. Smith, and H. J. Stocker, “Evidence for tunneling in reverse-biased III-V photodetector diodes,” Appl. Phys. Lett., vol. 36, no. 7, pp. 580–582, 1980.

Sun, P.

D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightw. Technol., vol. 27, no. 15, pp. 3294–3302,  2009.

P. Sun, M. Hayat, B. Saleh, and M. Teich, “Statistical correlation of gain and buildup time in APDs and its effects on receiver performance,” J. Lightw. Technol., vol. 24, no. 2, pp. 755–768,  2006.

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. 3rd ed. Hoboken, NJ, USA: Wiley-Interscience, 2007.

Takashima, S.

S. Takashima, H. Nakagawa, S. Kim, F. Goto, M. Okayasu, and H. Inoue, “40-Gbit/s receiver with −21 dBm sensitivity employing filterless semiconductor optical amplifier,” in Proc. OFC Opt. Fiber Commun. Conf., vol. 2, 2003, pp. 471–472.

Takeuchi, T.

K. Shiba, T. Nakata, T. Takeuchi, T. Sasaki, and K. Makita, “10 Gbit/s asymmetric waveguide APD with high sensitivity of -30 dBm,” Electron. Lett., vol. 42, no. 20, pp. 1177–1178, 2006.

Tan, C. H.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron., vol. 47, no. 8, pp. 1123–1128,  2011.

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2631–2638,  2010.

Teich, M.

P. Sun, M. Hayat, B. Saleh, and M. Teich, “Statistical correlation of gain and buildup time in APDs and its effects on receiver performance,” J. Lightw. Technol., vol. 24, no. 2, pp. 755–768,  2006.

Teich, M. C.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 37, no. 9, pp. 1976–1984,  1990.

Tsunotani, M.

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10-Gb/s optical communication systems,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1303–1308,  2001.

Yokoyama, H.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “High-sensitivity 25 Gbit/s avalanche photodiode receiver optical sub-assembly for 40 km transmission,” Electron. Lett., vol. 48, no. 13, pp. 777–778, 2012.

Appl. Phys. Lett. (2)

S. R. Forrest, M. DiDomenico, R. G. Smith, and H. J. Stocker, “Evidence for tunneling in reverse-biased III-V photodetector diodes,” Appl. Phys. Lett., vol. 36, no. 7, pp. 580–582, 1980.

V. L. Dalal, “Hole velocity in p -GaAs,” Appl. Phys. Lett., vol. 16, pp. 489–491, 1970.

ASNT6122-BD 50 Gbps Linear/Limiting TIA (1)

ADSANTEC, ASNT6122-BD 50 Gbps Linear/Limiting TIA. 2017.

Electron. Lett. (2)

K. Shiba, T. Nakata, T. Takeuchi, T. Sasaki, and K. Makita, “10 Gbit/s asymmetric waveguide APD with high sensitivity of -30 dBm,” Electron. Lett., vol. 42, no. 20, pp. 1177–1178, 2006.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “High-sensitivity 25 Gbit/s avalanche photodiode receiver optical sub-assembly for 40 km transmission,” Electron. Lett., vol. 48, no. 13, pp. 777–778, 2012.

IEEE J. Quantum Electron. (1)

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron., vol. 47, no. 8, pp. 1123–1128,  2011.

IEEE J. Solid-State Circuits (1)

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10-Gb/s optical communication systems,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1303–1308,  2001.

IEEE Photon. Technol. Lett. (2)

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of high-speed lightwave system receivers using InAlAs avalanche photodiodes,” IEEE Photon. Technol. Lett., vol. 23, no. 4, pp. 233–235,  2011.

P. Angelini, “Record −22.5-dBm sensitivity SOA-PIN-TIA photoreceiver module for 40-Gb/s applications,” IEEE Photon. Technol. Lett., vol. 27, no. 19, pp. 2027–2030,  2015.

IEEE Trans. Electron Devices (5)

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2631–2638,  2010.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 37, no. 9, pp. 1976–1984,  1990.

E. Jamil, M. M. Hayat, and G. A. Keeler, “Analytical formulas for mean gain and excess noise factor in InAs avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 65, no. 2, pp. 610–614,  2018.

J. S. Ng, “Effect of dead space on avalanche speed,” IEEE Trans. Electron Devices, vol. 49, no. 4, pp. 544–549,  2002.

M. V. Fischetti, “Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport,” IEEE Trans. Electron Devices, vol. 38, no. 3, pp. 634–649,  1991.

J. Appl. Phys. (1)

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys., vol. 38, pp. 3705–3714, 1967.

J. Electron. Mater. (1)

J. Beck “The HgCdTe electron avalanche photodiode,” J. Electron. Mater., vol. 35, no. 6, pp. 1166–1173, 2006.

J. Lightw. Technol. (3)

P. Sun, M. Hayat, B. Saleh, and M. Teich, “Statistical correlation of gain and buildup time in APDs and its effects on receiver performance,” J. Lightw. Technol., vol. 24, no. 2, pp. 755–768,  2006.

D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightw. Technol., vol. 27, no. 15, pp. 3294–3302,  2009.

C. Caillaud, “Integrated SOA-PIN detector for high-speed short reach applications,” J. Lightw. Technol., vol. 33, pp. 1596–1601, 2015.

Optica (1)

Physica B, Condensed Matter (1)

W. Nakwaski, “Effective masses of electrons and heavy holes in GaAs, InAs, AlAs and their ternary compounds,” Physica B, Condensed Matter, vol. 210, pp. 1–25, 1995.

Solid-State Electron. (1)

K. Brennan and K. Hess, “High field transport in GaAs, InP and InAs,” Solid-State Electron., vol. 27, no. 4, pp. 347–357, 1984.

Other (6)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. 3rd ed. Hoboken, NJ, USA: Wiley-Interscience, 2007.

A. R. Marshall, “The InAs electron avalanche photodiode and the influence of thin avalanche photodiodes on receiver sensitivity,” Ph.D. Thesis, Univ. Sheffield, Sheffield, U.K., 2009.

ADSANTEC, “ASNT6123 25 Gbps Dual Transimpedance Amplifier,” 2010.

S.-T. Chou, S.-H. Huang, Z.-H. Hon, and W.-Z. Chen, “A 40 Gbps optical receiver analog front-end in 65 nm CMOS,” in Proc. IEEE Int. Symp. Circuits Syst., May 2012, pp. 1736–1739.

R Piessens, Quadpack: A Subroutine Package for Automatic Integration. Berlin, Germany: Springer-Verlag, 1983.

S. Takashima, H. Nakagawa, S. Kim, F. Goto, M. Okayasu, and H. Inoue, “40-Gbit/s receiver with −21 dBm sensitivity employing filterless semiconductor optical amplifier,” in Proc. OFC Opt. Fiber Commun. Conf., vol. 2, 2003, pp. 471–472.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.