Abstract

A novel design of a tunable True-Time delay line (TTDL) based on a multicore photonic crystal fiber (PCF) is proposed. It enables simultaneous transport and processing of microwave photonic signals over a broad radiofrequency processing range. Independent group delay behavior in 19 different cores characterized by a constant differential group delay between cores provides TTDL operation on 19 signal samples. The 19-core PCF structure allows tailoring the chromatic dispersion range between 1.5 and 31.2 ps/nm·km, which translates into a very broad microwave signal processing range from a few up to tens of GHz. A near-zero dispersion slope reduces the time delay errors in the TTDL's operation to less than 5% in a 40-nm optical wavelength range, thus ensuring its satisfactory performance. Its performance as a TTDL is evaluated in terms of higher-order dispersion as well as other degradation effects such as crosstalk and nonlinear fiber response. A high index contrast between core and cladding, between 0.3 to 1.5%, enables low intercore crosstalk and confinement losses as well as greater robustness against fiber bends and twists. Fabrication of this type of MCF might be possible although it will prove challenging. This work advances the state-of-the-art of a TTDL based on SDM technology by increasing the number of samples and microwave processing range.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microw. photon. signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.
  2. K. Wilner and A. P. van den Heuvel, “Fiber-optic delay lines for microwave signal processing,” Proc. IEEE, vol. 64, no. 5, pp. 805–807, 1976.
  3. J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 7, pp. 1321–1326, 1999.
  4. D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guided Wave Lett., vol. 6, no. 2, pp. 103--105, 1996.
  5. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210, 2006.
  6. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.
  7. I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.
  8. I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Selective grating inscription in multicore fibers for radiofrequency signal processing,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, California, 2017, Paper. W4B.6.
  9. S. Garcia and I. Gasulla, “Design of heterogeneous multicore fibers as sampled true-time delay lines,” Opt. Lett., vol. 40, no. 4, pp. 621–624, 2015.
  10. S. García and I. Gasulla, “Dispersion-engineered multicore fibers for distributed radiofrequency signal processing,” Opt. Express, vol. 24, no. 18, pp. 153–156, 2016.
  11. R. Guillem, S. García, J. Madrigal, D. Barrera, and I. Gasulla, “Few-mode fiber true time delay lines for distributed radiofrequency signal processing,” Opt. Express, vol. 26, no. 20, pp. 25761–25768, 2018.
  12. S. García, D. Barrera, J. Hervás, S. Sales, and I. Gasulla, “Microwave signal processing over multicore fiber,” Photonics., vol. 4, no. 4, pp. 1–14, 2017.
  13. J. C. Knight, T. A. Birks, P. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, no. 19, pp. 1547–1549, 1996.
  14. P. Russell, “Photonic crystal fiber: finding the holey grail,” Opt. Photon. News, vol. 18, no. 7, pp. 26–31, 2007.
  15. P. S. J. Russell, “Photonic crystal fibers: Basics and applications,” in Optical Fiber Telecommunications, 5th ed., I. P. Kaminow, T. Li, and A. E. Willner, Eds. New York, NY, USA: Academic Press, 2008, pp. 485–522.
  16. J. C. Knight, T. A. Birks, B. J. Mangan, P. Russel, G. G. Vienne, and J.-P. De Sandro, “Multicore photonic crystal fibers,” in Proc. 12th Int. Conf. on. Opt. Fiber Sensors, Williamsburg, Virginia,1997, Paper. PDP5.
  17. P. Russell, “Photonic Crystal Fibers: A Historical Account,” IEEE LEOS Newslett., vol. 5, no. 21, pp. 11–15, 2007.
  18. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett., vol. 25, no. 11, pp. 790–792, 2000.
  19. W. Reeves, J. Knight, P. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express, vol. 10, no. 14, pp. 609–613, 2002.
  20. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion,” Opt. Express, vol. 11, no. 8, pp. 843–852, 2003.
  21. T. A. Birks, J. C. Knight, and P. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, no. 13, pp. 961–963, 1997.
  22. N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt.: A Pure Appl. Opt., vol. 5, no. 3, pp. 163–167, 2003.
  23. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express, vol. 13, no. 10, pp. 3728–3736, 2005.
  24. K. P. Hansen, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Proc. Opt. Fiber Commun. Conf. and. Exhib., 2002, Paper FA9.
  25. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1065–1067, 2004.
  26. T.-Lin L. Wu and C.-Hsin H. Chao, “A novel ultraflattened dispersion photonic Crystal fiber,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 67–69, 2005.
  27. T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightw. Technol., vol. 23, no. 12, pp. 4178–4183, 2005.
  28. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J., vol. 4, no. 5, pp. 1987–1995, 2012.
  29. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–3.
  30. V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The beginning,” Physica D: Nonlinear Phenomena, vol. 238, no. 5, pp. 540–548, 2009.
  31. S. García, M. Ureña, and I. Gasulla, “Heterogeneous multicore fiber for optical beamforming,” in Proc. 2019 Int. Topical Meeting Microw. Photon. (MWP), 2019, pp. 1–4.

2018 (1)

2017 (1)

S. García, D. Barrera, J. Hervás, S. Sales, and I. Gasulla, “Microwave signal processing over multicore fiber,” Photonics., vol. 4, no. 4, pp. 1–14, 2017.

2016 (1)

2015 (1)

2013 (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microw. photon. signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

2012 (2)

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J., vol. 4, no. 5, pp. 1987–1995, 2012.

2009 (1)

V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The beginning,” Physica D: Nonlinear Phenomena, vol. 238, no. 5, pp. 540–548, 2009.

2007 (2)

P. Russell, “Photonic crystal fiber: finding the holey grail,” Opt. Photon. News, vol. 18, no. 7, pp. 26–31, 2007.

P. Russell, “Photonic Crystal Fibers: A Historical Account,” IEEE LEOS Newslett., vol. 5, no. 21, pp. 11–15, 2007.

2006 (1)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210, 2006.

2005 (3)

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express, vol. 13, no. 10, pp. 3728–3736, 2005.

T.-Lin L. Wu and C.-Hsin H. Chao, “A novel ultraflattened dispersion photonic Crystal fiber,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 67–69, 2005.

T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightw. Technol., vol. 23, no. 12, pp. 4178–4183, 2005.

2004 (1)

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1065–1067, 2004.

2003 (2)

N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt.: A Pure Appl. Opt., vol. 5, no. 3, pp. 163–167, 2003.

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion,” Opt. Express, vol. 11, no. 8, pp. 843–852, 2003.

2002 (1)

2000 (1)

1999 (1)

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 7, pp. 1321–1326, 1999.

1997 (1)

1996 (2)

J. C. Knight, T. A. Birks, P. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, no. 19, pp. 1547–1549, 1996.

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guided Wave Lett., vol. 6, no. 2, pp. 103--105, 1996.

1976 (1)

K. Wilner and A. P. van den Heuvel, “Fiber-optic delay lines for microwave signal processing,” Proc. IEEE, vol. 64, no. 5, pp. 805–807, 1976.

Andrés, P.

Atkin, D. M.

J. C. Knight, T. A. Birks, P. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, no. 19, pp. 1547–1549, 1996.

Barrera, D.

R. Guillem, S. García, J. Madrigal, D. Barrera, and I. Gasulla, “Few-mode fiber true time delay lines for distributed radiofrequency signal processing,” Opt. Express, vol. 26, no. 20, pp. 25761–25768, 2018.

S. García, D. Barrera, J. Hervás, S. Sales, and I. Gasulla, “Microwave signal processing over multicore fiber,” Photonics., vol. 4, no. 4, pp. 1–14, 2017.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Selective grating inscription in multicore fibers for radiofrequency signal processing,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, California, 2017, Paper. W4B.6.

Birks, T. A.

T. A. Birks, J. C. Knight, and P. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, no. 13, pp. 961–963, 1997.

J. C. Knight, T. A. Birks, P. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, no. 19, pp. 1547–1549, 1996.

J. C. Knight, T. A. Birks, B. J. Mangan, P. Russel, G. G. Vienne, and J.-P. De Sandro, “Multicore photonic crystal fibers,” in Proc. 12th Int. Conf. on. Opt. Fiber Sensors, Williamsburg, Virginia,1997, Paper. PDP5.

Bouk, A. H.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1065–1067, 2004.

Broderick, N. G. R.

Capmany, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microw. photon. signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 7, pp. 1321–1326, 1999.

Chao, C.-Hsin H.

T.-Lin L. Wu and C.-Hsin H. Chao, “A novel ultraflattened dispersion photonic Crystal fiber,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 67–69, 2005.

Cucinotta, A.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1065–1067, 2004.

De Sandro, J.-P.

J. C. Knight, T. A. Birks, B. J. Mangan, P. Russel, G. G. Vienne, and J.-P. De Sandro, “Multicore photonic crystal fibers,” in Proc. 12th Int. Conf. on. Opt. Fiber Sensors, Williamsburg, Virginia,1997, Paper. PDP5.

Ferrando, A.

Finazzi, V.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

Folkenberg, J. R.

N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt.: A Pure Appl. Opt., vol. 5, no. 3, pp. 163–167, 2003.

Garcia, S.

García, S.

R. Guillem, S. García, J. Madrigal, D. Barrera, and I. Gasulla, “Few-mode fiber true time delay lines for distributed radiofrequency signal processing,” Opt. Express, vol. 26, no. 20, pp. 25761–25768, 2018.

S. García, D. Barrera, J. Hervás, S. Sales, and I. Gasulla, “Microwave signal processing over multicore fiber,” Photonics., vol. 4, no. 4, pp. 1–14, 2017.

S. García and I. Gasulla, “Dispersion-engineered multicore fibers for distributed radiofrequency signal processing,” Opt. Express, vol. 24, no. 18, pp. 153–156, 2016.

S. García, M. Ureña, and I. Gasulla, “Heterogeneous multicore fiber for optical beamforming,” in Proc. 2019 Int. Topical Meeting Microw. Photon. (MWP), 2019, pp. 1–4.

Gasulla, I.

R. Guillem, S. García, J. Madrigal, D. Barrera, and I. Gasulla, “Few-mode fiber true time delay lines for distributed radiofrequency signal processing,” Opt. Express, vol. 26, no. 20, pp. 25761–25768, 2018.

S. García, D. Barrera, J. Hervás, S. Sales, and I. Gasulla, “Microwave signal processing over multicore fiber,” Photonics., vol. 4, no. 4, pp. 1–14, 2017.

S. García and I. Gasulla, “Dispersion-engineered multicore fibers for distributed radiofrequency signal processing,” Opt. Express, vol. 24, no. 18, pp. 153–156, 2016.

S. Garcia and I. Gasulla, “Design of heterogeneous multicore fibers as sampled true-time delay lines,” Opt. Lett., vol. 40, no. 4, pp. 621–624, 2015.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microw. photon. signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Selective grating inscription in multicore fibers for radiofrequency signal processing,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, California, 2017, Paper. W4B.6.

S. García, M. Ureña, and I. Gasulla, “Heterogeneous multicore fiber for optical beamforming,” in Proc. 2019 Int. Topical Meeting Microw. Photon. (MWP), 2019, pp. 1–4.

Guillem, R.

Hansen, K. P.

K. P. Hansen, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Proc. Opt. Fiber Commun. Conf. and. Exhib., 2002, Paper FA9.

Hasegawa, T.

Hayashi, T.

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–3.

Hervás, J.

S. García, D. Barrera, J. Hervás, S. Sales, and I. Gasulla, “Microwave signal processing over multicore fiber,” Photonics., vol. 4, no. 4, pp. 1–14, 2017.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Selective grating inscription in multicore fibers for radiofrequency signal processing,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, California, 2017, Paper. W4B.6.

Hunter, D. B.

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guided Wave Lett., vol. 6, no. 2, pp. 103--105, 1996.

Knight, J.

Knight, J. C.

T. A. Birks, J. C. Knight, and P. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, no. 13, pp. 961–963, 1997.

J. C. Knight, T. A. Birks, P. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, no. 19, pp. 1547–1549, 1996.

J. C. Knight, T. A. Birks, B. J. Mangan, P. Russel, G. G. Vienne, and J.-P. De Sandro, “Multicore photonic crystal fibers,” in Proc. 12th Int. Conf. on. Opt. Fiber Sensors, Williamsburg, Virginia,1997, Paper. PDP5.

Koshiba, M.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J., vol. 4, no. 5, pp. 1987–1995, 2012.

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion,” Opt. Express, vol. 11, no. 8, pp. 843–852, 2003.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210, 2006.

Lloret, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microw. photon. signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210, 2006.

Madrigal, J.

Mangan, B. J.

J. C. Knight, T. A. Birks, B. J. Mangan, P. Russel, G. G. Vienne, and J.-P. De Sandro, “Multicore photonic crystal fibers,” in Proc. 12th Int. Conf. on. Opt. Fiber Sensors, Williamsburg, Virginia,1997, Paper. PDP5.

Matsui, T.

T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightw. Technol., vol. 23, no. 12, pp. 4178–4183, 2005.

Matsuo, S.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J., vol. 4, no. 5, pp. 1987–1995, 2012.

Minasian, R. A.

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guided Wave Lett., vol. 6, no. 2, pp. 103--105, 1996.

Miret, J. J.

Monro, T. M.

Mora, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microw. photon. signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

Mortensen, N. A.

N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt.: A Pure Appl. Opt., vol. 5, no. 3, pp. 163–167, 2003.

Nagashima, T.

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–3.

Nakajima, K.

T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightw. Technol., vol. 23, no. 12, pp. 4178–4183, 2005.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

Ortega, B.

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 7, pp. 1321–1326, 1999.

Ostrovsky, L. A.

V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The beginning,” Physica D: Nonlinear Phenomena, vol. 238, no. 5, pp. 540–548, 2009.

Pastor, D.

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 7, pp. 1321–1326, 1999.

Poletti, F.

Poli, F.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1065–1067, 2004.

Reeves, W.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express, vol. 13, no. 10, pp. 3728–3736, 2005.

Roberts, P.

Russel, P.

J. C. Knight, T. A. Birks, B. J. Mangan, P. Russel, G. G. Vienne, and J.-P. De Sandro, “Multicore photonic crystal fibers,” in Proc. 12th Int. Conf. on. Opt. Fiber Sensors, Williamsburg, Virginia,1997, Paper. PDP5.

Russell, P.

P. Russell, “Photonic Crystal Fibers: A Historical Account,” IEEE LEOS Newslett., vol. 5, no. 21, pp. 11–15, 2007.

P. Russell, “Photonic crystal fiber: finding the holey grail,” Opt. Photon. News, vol. 18, no. 7, pp. 26–31, 2007.

W. Reeves, J. Knight, P. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express, vol. 10, no. 14, pp. 609–613, 2002.

T. A. Birks, J. C. Knight, and P. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, no. 13, pp. 961–963, 1997.

J. C. Knight, T. A. Birks, P. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, no. 19, pp. 1547–1549, 1996.

Russell, P. S. J.

P. S. J. Russell, “Photonic crystal fibers: Basics and applications,” in Optical Fiber Telecommunications, 5th ed., I. P. Kaminow, T. Li, and A. E. Willner, Eds. New York, NY, USA: Academic Press, 2008, pp. 485–522.

Saitoh, K.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J., vol. 4, no. 5, pp. 1987–1995, 2012.

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion,” Opt. Express, vol. 11, no. 8, pp. 843–852, 2003.

Sales, S.

S. García, D. Barrera, J. Hervás, S. Sales, and I. Gasulla, “Microwave signal processing over multicore fiber,” Photonics., vol. 4, no. 4, pp. 1–14, 2017.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microw. photon. signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Selective grating inscription in multicore fibers for radiofrequency signal processing,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, California, 2017, Paper. W4B.6.

Sancho, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microw. photon. signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

Sankawa, I.

T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightw. Technol., vol. 23, no. 12, pp. 4178–4183, 2005.

Sasaki, T.

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–3.

Sasaoka, E.

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion,” Opt. Express, vol. 11, no. 8, pp. 843–852, 2003.

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–3.

Selleri, S.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1065–1067, 2004.

Shimakawa, O.

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–3.

Silvestre, E.

Takenaga, K.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J., vol. 4, no. 5, pp. 1987–1995, 2012.

Tse, V.

Ureña, M.

S. García, M. Ureña, and I. Gasulla, “Heterogeneous multicore fiber for optical beamforming,” in Proc. 2019 Int. Topical Meeting Microw. Photon. (MWP), 2019, pp. 1–4.

van den Heuvel, A. P.

K. Wilner and A. P. van den Heuvel, “Fiber-optic delay lines for microwave signal processing,” Proc. IEEE, vol. 64, no. 5, pp. 805–807, 1976.

Vienne, G. G.

J. C. Knight, T. A. Birks, B. J. Mangan, P. Russel, G. G. Vienne, and J.-P. De Sandro, “Multicore photonic crystal fibers,” in Proc. 12th Int. Conf. on. Opt. Fiber Sensors, Williamsburg, Virginia,1997, Paper. PDP5.

Wilner, K.

K. Wilner and A. P. van den Heuvel, “Fiber-optic delay lines for microwave signal processing,” Proc. IEEE, vol. 64, no. 5, pp. 805–807, 1976.

Wu, T.-Lin L.

T.-Lin L. Wu and C.-Hsin H. Chao, “A novel ultraflattened dispersion photonic Crystal fiber,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 67–69, 2005.

Zakharov, V. E.

V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The beginning,” Physica D: Nonlinear Phenomena, vol. 238, no. 5, pp. 540–548, 2009.

Zhou, J.

T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightw. Technol., vol. 23, no. 12, pp. 4178–4183, 2005.

Opt. Lett. (1)

J. C. Knight, T. A. Birks, P. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, no. 19, pp. 1547–1549, 1996.

IEEE LEOS Newslett. (1)

P. Russell, “Photonic Crystal Fibers: A Historical Account,” IEEE LEOS Newslett., vol. 5, no. 21, pp. 11–15, 2007.

IEEE Microw. Guided Wave Lett. (1)

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guided Wave Lett., vol. 6, no. 2, pp. 103--105, 1996.

IEEE Photon. J. (2)

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J., vol. 4, no. 5, pp. 1987–1995, 2012.

IEEE Photon. Technol. Lett. (3)

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1065–1067, 2004.

T.-Lin L. Wu and C.-Hsin H. Chao, “A novel ultraflattened dispersion photonic Crystal fiber,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 67–69, 2005.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210, 2006.

IEEE Trans. Microw. Theory Techn. (1)

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 7, pp. 1321–1326, 1999.

J. Lightw. Technol. (2)

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microw. photon. signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightw. Technol., vol. 23, no. 12, pp. 4178–4183, 2005.

J. Opt.: A Pure Appl. Opt. (1)

N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt.: A Pure Appl. Opt., vol. 5, no. 3, pp. 163–167, 2003.

Nature Photon. (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

Opt. Express (5)

Opt. Lett. (3)

Opt. Photon. News (1)

P. Russell, “Photonic crystal fiber: finding the holey grail,” Opt. Photon. News, vol. 18, no. 7, pp. 26–31, 2007.

Photonics. (1)

S. García, D. Barrera, J. Hervás, S. Sales, and I. Gasulla, “Microwave signal processing over multicore fiber,” Photonics., vol. 4, no. 4, pp. 1–14, 2017.

Physica D: Nonlinear Phenomena (1)

V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The beginning,” Physica D: Nonlinear Phenomena, vol. 238, no. 5, pp. 540–548, 2009.

Proc. IEEE (1)

K. Wilner and A. P. van den Heuvel, “Fiber-optic delay lines for microwave signal processing,” Proc. IEEE, vol. 64, no. 5, pp. 805–807, 1976.

Other (6)

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Selective grating inscription in multicore fibers for radiofrequency signal processing,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, California, 2017, Paper. W4B.6.

P. S. J. Russell, “Photonic crystal fibers: Basics and applications,” in Optical Fiber Telecommunications, 5th ed., I. P. Kaminow, T. Li, and A. E. Willner, Eds. New York, NY, USA: Academic Press, 2008, pp. 485–522.

J. C. Knight, T. A. Birks, B. J. Mangan, P. Russel, G. G. Vienne, and J.-P. De Sandro, “Multicore photonic crystal fibers,” in Proc. 12th Int. Conf. on. Opt. Fiber Sensors, Williamsburg, Virginia,1997, Paper. PDP5.

S. García, M. Ureña, and I. Gasulla, “Heterogeneous multicore fiber for optical beamforming,” in Proc. 2019 Int. Topical Meeting Microw. Photon. (MWP), 2019, pp. 1–4.

K. P. Hansen, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Proc. Opt. Fiber Commun. Conf. and. Exhib., 2002, Paper FA9.

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.